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@ Researcher at the French Mapping Agency in the machine learning department
STRUDEL.

@ Focus: using the data-structure to increase precision and speed of learning methods.
@ PhD: learning and optimization on large graphs at INRIA (Bach/Obozinski).

o Current projects:

- Analysis of very large point clouds.

- Real-time analysis for autonomous vehicles.

- Superspectral satellite imagery time-sequences analysis.

- Learning on huge graphs.
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Deep Learning basics

@ Motivation: sufficient data trumps expertise.
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@ Each unit (or neuron) is simple, the network architecture is complex.
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Deep Learning basics

@ Motivation: sufficient data trumps expertise.
@ Main idea: replace all handcrafted features (SIFTs, HOGs, etc...) with learned ones.
@ Each unit (or neuron) is simple, the network architecture is complex.

@ The network architecture must represent the structure of the data.
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Deep Learning basics

Motivation: sufficient data trumps expertise.

Main idea: replace all handcrafted features (SIFTs, HOGs, etc...) with learned ones.

Each unit (or neuron) is simple, the network architecture is complex.

The network architecture must represent the structure of the data.

AT NO POINT ARE ARTIFICIAL NEURAL NETWORKS SUPPOSED TO
MODEL AN ACTUAL NEURON/BRAIN.

224x224x3 224x224x64
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() convolution+ReLU
) max pooling
] fully connected+ReLU

7 softmax

credit : jeremyjordan.me
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Artificial Neuron

y = (32, wixi)
X; : inputs

w; : weights

f : non-linearity
y @ outputs
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Artificial Neuron

y = (32, wixi)

X; : inputs

w; : weights

f : non-linearity

y @ outputs

In short : a matrix product XTW and

non-linearity.

Non linearity essential (or else simplifies
to a matrix product).

f = sigmoid, Relu=max(0, x).
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Multilayer Perceptron
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Multilayer Perceptron

Organization in layers

the deeper layers extracts more
complicated / abstract features

Very old model, exists since the 50s

Universal Approximation Theorem:
any functions of x can be approximated
to arbitrary precision by a MLP with
sufficient width.
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Multilayer Perceptron

Organization in layers

@ the deeper layers extracts more
complicated / abstract features

o Very old model, exists since the 50s

@ Universal Approximation Theorem:
any functions of x can be approximated
to arbitrary precision by a MLP with
sufficient width.

@ Simple model, no assumption
whatsoever on the data structure.
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Learning with Neural Networks

o Training a neural network: finding
values for the weights w such that
output y is close to a ground truth
value y .

100,0,).

credit : exortech.github.io
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Learning with Neural Networks

o Training a neural network: finding
values for the weights w such that
output y is close to a ground truth
value y .

@ We define a loss function L(y(w), )
decreasing with the precision (for

example: ||y — 9%, cross-entropy). 10,00,

e L is usually an (almost) differentiable
function but is generally nonconvex.

@ However, we can find good weights 0o 0
with Stochastic Gradient Descent.

@ Automatic differentiation: gradients are credit : exortech.github.io
easily computed and propagated
(" backprop”).

@ Supervized learning, require a lot of
high quality annotations.
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Convolutional Neural Network

o Problem: the size of W increase
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Convolutional Neural Network

o Problem: the size of W increase
quadratically with the layers' size

@ 100 x 100 image : 10® parameters per 32
layer! Unmanageable.

@ Solution: local convolutions: values of 000 ﬂ
a layer only depend on a small number
of points in the previous layer (the
receptive field).

32

3
credit : cs231n.github.io

11 /87

Deep Learning Basics



Convolutional Neural Network

o Problem: the size of W increase
quadratically with the layers' size

@ 100 x 100 image : 10® parameters per Single depth slice

layer! Unmanageable. JiTT2T4
A . max pool with 2x2 filters
o Solution: local convolutions: values of 5]6|7]|8]| andstide2 & 8
a layer only depend on a small number 3]2|1]o0 e
of points in the previous layer (the 112]3]4

receptive field). "

o Paired with Pooling layers which credit : cs231n.github.io
decrease the size of the feature maps.
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Convolutional Neural Network

o Problem: the size of W increase
quadratically with the layers' size

@ 100 x 100 image : 10® parameters per Single depth slice
layer! Unmanageable. MK EREIE] .

@ Solution: local convolutions: values of 56|78 miswez 6|8
a layer only depend on a small number 3210 8|4
of points in the previous layer (the o ¢ -
receptive field). —_—

o Paired with Pooling layers which credit : cs231n.github.io

decrease the size of the feature maps.

@ Very successful for images, exploits the
spatial structure.
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Convolutional Neural Network Il

sunset

convolution + max pooling
nonlinearity

convolution + pooling layers fully connected layers  Nx binary classification

o Traditional structure:

- Sequence of (Conv + Pool) units to compute local features and decrease
embeddings size

- One (or two) fully connected MLP at the end to analyze the whole image.

credit: adeshpande3.github.io
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Convolutional Neural Network Il

sunset

convolution + max pooling
nonlinearity
convolution + pooling layers fully connected layers  Nx binary classification

Traditional structure:

- Sequence of (Conv + Pool) units to compute local features and decrease
embeddings size

One (or two) fully connected MLP at the end to analyze the whole image.

Deep structures seem to work best.

credit: adeshpande3.github.io
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Recurrent Neural Network

®

X

A

A A
General idea: the network maintains a hidden state h; called memory

Update: ht+1 = f(ht,Xt)
@ There exists many type of RNNs: LSTMs, GRUs, etc...

@—>—@®

Objective: modeling temporal structure
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Recurrent Neural Network

®

X

A

A A
General idea: the network maintains a hidden state h; called memory
Update: ht+1 = f(ht,Xt)

There exists many type of RNNs: LSTMs, GRUs, etc...

Can also be used to model spatial structure.

@—>—@®

Objective: modeling temporal structure

@ Successful for sequence learning in natural language processing, speech recognition,
etc.
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o Tensorflow, Pytorch: high level python-based language doing all the tedious work.
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Deep Learning In Practice

o Tensorflow, Pytorch: high level python-based language doing all the tedious work.

@ Example for a 1 hidden later MLP to classify D-dimension data between K classes.

layerl = Linear(D,L), layer2= Linear(L,K)
optimizer = SGD()
for i_epoch in range(n_epoch):

for batch, gt in enumerate(training set) % batch :B x D, gt : B

feat = Relu(layerl(batch)) % feat : Bx L
feat = Relu(layer2(feat)) % feat : Bx K
output = softmax(feat) % output: B x K
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Deep Learning In Practice

o Tensorflow, Pytorch: high level python-based language doing all the tedious work.

@ Example for a 1 hidden later MLP to classify D-dimension data between K classes.

layerl = Linear(D,L), layer2= Linear(L,K)
optimizer = SGD()
for i_epoch in range(n_epoch):
for batch, gt in enumerate(training set) % batch :B x D, gt: B
feat = Relu(layerl(batch))
feat = Relu(layer2(feat))

% feat : B x L
% feat : Bx K
% output: B x K

% compute the loss

output = softmax(feat)

loss = cross_entropy(output, gt)
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o Tensorflow, Pytorch: high level python-based language doing all the tedious work.

@ Example for a 1 hidden later MLP to classify D-dimension data between K classes.
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o Tensorflow, Pytorch: high level python-based language doing all the tedious work.

@ Example for a 1 hidden later MLP to classify D-dimension data between K classes.
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o Tensorflow, Pytorch: high level python-based language doing all the tedious work.

@ Example for a 1 hidden later MLP to classify D-dimension data between K classes.

layerl = Linear(D,L), layer2= Linear(L,K)
optimizer = SGD()
for i_epoch in range(n_epoch):

for batch, gt in enumerate(training set) % batch :B x D, gt : B
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output = softmax(feat) % output: B x K
loss = cross_entropy(output, gt) % compute the loss
loss.backward() % compute the gradient
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Deep Learning In Practice

o Tensorflow, Pytorch: high level python-based language doing all the tedious work.

@ Example for a 1 hidden later MLP to classify D-dimension data between K classes.

layerl = Linear(D,L), layer2= Linear(L,K)
optimizer = SGD()
for i_epoch in range(n_epoch):

for batch, gt in enumerate(training set) % batch :B x D, gt : B

feat = Relu(layerl(batch)) % feat : Bx L
feat = Relu(layer2(feat)) % feat : Bx K
output = softmax(feat) % output: B x K
loss = cross_entropy(output, gt) % compute the loss
loss.backward() % compute the gradient
optimizer.step(i_epoch) % gradient step
print("epoch = epoch, loss = avg-loss) % monitor loss decrease

return softmax(Relu(layer2(Relu(layerl(test_set)))))
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Deep Learning on Raster Imagery

In the next hour, we will get insight on:

Motivation for Deep Learning on Raster Imagery
Semantic Segmentation Fully-conv. Networks
Multi-modal Classification

Object Detection

Change Detection and Multi-temporal Analysis
Classif. of Hyperspectral Data

Deep Learning on SAR Data

Resources

Practical Session: Semantic Segmentation
Bibliography 2D
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Deep Learning on Raster Imagery

Lots of common application in everyone's life:

Self- drlvmg cars

Doeplob V3 xception_cityscopes_trcinfine (GTXSBOM) N
et o ame (5 90 . e (27 150

Facebook’s facial recognition

Gary Chavez added a photo you might ...
bein.
about a minute ago * &%

Mork
choklad
XL >

Google Translate... images Painting like Monet!

Figure: Applications of Deep Learning
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Deep Learning on Raster Imagery

So... what can we do in remote sensing?

Figure: Can we understand and translate images to cartography?
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Motivation for Deep Learning on Raster Imagery

Data Fvolution  Feature Extraction  Classification

resol. Pixel-based
filtering Manual modeling, thresholding
resol. + Textures,
local features Distribution estimates (GMMs, etc.)
data 4 g, Learning-based classifiers (SVMs, en-
= semble methods: random forests, boost-
ing): high-dimensional, non-linear,
_ complex
resol. ++ 7 Complex features
- (object modeling)  active learning, latent SVM

data ++ Patehs of pixels,
v filter banks Deep neural networks (RBM, RCNN)

Figure: An history of classification in remote sensing

Deep Learning on Raster Imagery 19 / 87



Motivation for Deep Learning on Raster Imagery

@ In some specific cases, standard machine learning approaches or sensor-based
heuristics are well enough...

@ but Convolutional Neural Networks make good generic classifiers

Deep Learning on Raster Imagery



Simple Deep Learning Baseline

3D Algorithm Imp. Build. Low Tree Car Clutter Boat Water |Overall Cohen
surf. veg. acc. % K
* Expert 5897 6387 |74.55 21 | o o
RGB/SVM 5389 53.53 5032 3297 2402 1375 1212 [0883| | 6077 052
* RGBA/SVM 1451 6779 3803 2743 715 112 1458 9845 | 5076 041
* RGBAVSVM 60.86 69.01 S7.12 38.12 1159 2049 1504 9442 | 6383 0.56
HOG32/SVM 2894 43.17 4877 2732 3024 1739 1261 8802 | 5245 041
HOGI6/SVM 3952 3845 3565 2999 2193 1613 1352 8002 194 036
HSV/SVM 7160 4697 6838 012 000 1371 000 9214 | 7016 060
* HSVDGr/SYM 7330 70.85 6875 017 000 1711 000 9237 | 7360 065
som 51.45 s o
DIMM 48.46 s o
RGB OverFeatSVM 5586 6334 5948 64.44 3603 2831 4151 9207 | 6797 059
RGB Caffe/SVM 6232 6266 6323 60.84 3134 3249 4657 9561 | 7106 0.63
RGB VGG/SVM 63.18 64.66 6360 6698 3146 4368 5192 9593 | 7236 0.64
* RGBd VGG/SVM 66.02 | 7426] 6504 6694 3204 4496 5061 9631 | 7477 067
* RGBd* VGG/SVYM 67.66 7270 6838 71877 3392 456 9650 | 7656 070

% RGBd* trained AlexNet 79,10/ 7560 7800 79.50 5080|6340 44.80 9820 [\g552 0781

Figure: Benchmarking old-school vs. deep learning methods (Campos-Taberner et al., 2016)
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Fully-Convolutional Networks

Remote Sensing processing:

13 Wiindioy — ]

¥ \Wind

[at—— 2 Whiriclowy

1% Wdndow for 29 rowe

Cne Pixel

Extract patches from the image using
a sliding window with overlap

Train on images with ground-truth

Apply on test patches (average several
predictions on overlapping pixels)

Classification: 1 image (or local
patch in remote sensing) — 1 label

Segmentation: 1 pixel — 1 label

Image = structured pixel ensemble
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Fully-Convolutional Networks

AlexNet CNN for classification (Krizhevsky et al., 2012)

i » \‘*\ \*
@ / — “cat”

Fully connected Softmax
layers

4

J ﬂl[ Convolutional layers
111} + max pooling

Fully-convolutional AlexNet for semantic segmentation (Long et al., 2015)

ﬁ@ & & &

Convolutional layers
{ex-fully connected)

Convolutional layers lﬂp
+ max pooling Hi‘ﬂtu

Figure: Fully-convolutional networks (FCNs)
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Fully-Convolutional Networks

Decoder
conv + BN + ReLU + pooling upsampling + conv + BN + ReLU

@ SegNet: A deep convolutional Encoder-Decoder architecture for Image
Segmentation (Bandrinarayanan et al., 2016)

o And today: U-Net (Ronneberger et al., 2015), Hourglass (Newell et al. 2016))
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Fully-Convolutional Networks

IR/R/G 10cm/pixel Ground-truth

Figure: SegNet semantic segmentation (Audebert et al., 2017a)
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Multi-modal Semantic Segmentation

How to automatically generate maps from aerial imagery?
@ Non-standard (yet complimentary) imagery: multispectral, LiDAR...

o Auxiliary data: existing open-source maps (OpenStreetMap, etc.)
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Multi-modal Semantic Segmentation

How to automatically generate maps from aerial imagery?
@ Dual-stream networks which translate data to representations (coding)...

@ Fusion and decoding from representations to maps

(((eeonsff

Encoder Decoder
w + BX -+ ReLU + pooling upsampling + conv + BN + ReLU
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Multi-modal Semantic Segmentation

IR/R/G Ground-truth IR/R/G pred. IR/R/G +DSM pred.

Figure: Multimodal semantic segmentation results (Audebert et al., 2017a)

@ Sensor-based information helps!
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Multi-modal Semantic Segmentation

How to automatically generate maps from aerial imagery using auxiliary maps?
@ Incorporate information to guide the process, FuseNet: (Hazirbas et al., 2016)

o Faster training and better results!

Encoder Decoder
conv + BN + ReLU + pooling

§

(&

upsampling + conv + BN + ReLU|

Figure: Joint learning of RGB imagery and OSM (Audebert et al., 2017b)
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Multi-modal Semantic Segmentation

I -3, W
: B . il
wﬂ“’
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Figure: RGB4+OSM semantic segmentation results (Audebert et al., 2017b)
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Object Detection

Any generic detection network (e.g. Faster-RCNN) can be fine-tuned to fit user’s needs,
eg.:

@ mapping and monitoring marine turtles from UAVs in environmental surveys

@ detecting accessibility signs to map related parking lots

o detect and map buried networks from geophysical data (ground-penetrating radar)

Turtle detection Accessibility mapping Buried network detection
WIPSEA (Nassar & Leféevre, 2019) (Pham & Lefevre, 2018)
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Change detection

How to extend semantic analysis to multi-temporal data ?
@ detect changes
@ monitor activity in high-revisit rate acquisitions

@ focus on specific changes (urban, agriculture, vehicles, industrial activity...)
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Change detection

How to extend semantic analysis to multitemporal data 7

o As before, simply concatenating images...

@ Or with siamese networks, i.e. dual stream nets which share weights.

Input 1 + Input 2 Input 1+ Input 2
f g ———

[MaxPoor.

[
2C-16-16

- Max-Pool. 2x2 -

16-32-32

' Max-Pool. 2x2 '

32-64-64-64

|MEX-PO0I. 2x2 '

64-128-128-128

L 7

Max-Pool. 2x2

ax-Por
125+

Output

Standard CNN U-Net

Inputz input1

Output

Siamese network

Figure: CNN / FCN architectures for change detection. (Daudt et al., 2018)
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Change detection
g | Penc.Lom | D | Poec Lom| B —
.

0Ent:,CD ’ oDec,CD

°Enc,LcM ’ oDef:.LcM

Semantic change detection:

@ Joint multi-task learning of semantics
and differences with FCNs

@ Prediction of land cover and change
maps
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Change Detection

Siamese networks can work with very different inputs! (e.g. ground vs aerial imagery)

Figure: Multiview change detection (Lefévre et al. 2017)
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Multi-temporal Analysis

Recurrent Neural Networks

in sequence X7 label
=

=10}
p—

g “y
lJ( seq

L 3
TR R i
- W

=0 =5
7 T S 0
BV =0 classification [a'g'mx

f c
|
w W b4 L7
xr xr—1 prediction

X1

v.9)

reversed £0)

Figure: Multi-Temporal Land Cover Classification with Recurrent Auto-encoders (Russwurm &

Kéner, 2018)
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Classification of Hyperspectral Data

How to extend semantic analysis to hyperspectral imaging (HSI) data ?
o RGB to 100+ bands, image to data cube;
o finer spectral description, out-of-visible;

o lower resolution but finer class discrimination (materials, stressed or healthy
vegetation...)
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Classification of Hyperspectral Data

CNN architectures adapted to HSI classification:
@ 1D CNN: spectrum classification
@ 1D RNN: spectral sequence classification

Gl =
o oy

>

Figure: CNN 1D
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Classification of Hyperspectral Data

CNN architectures adapted to HSI classification:
@ Spatial-spectral, 2D+1D approaches
@ Reduce to RGB-like data + 2D CNN

o PCA or supervised reduction : alternate 2D and 1D convolutions

o

Figure: CNN 2D+1D (Lee et al., 2016)
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Classification of Hyperspectral Data

CNN architectures adapted to HSI classification:

@ End-to-end 3D pattern recognition: apply learnable (w, h, B) filters on the
hypercube

=

Qutput
FC

Figure: CNN 3D (Audebert et al, 2019)
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Classification of Hyperspectral Data

HSI classification with CNNs:

Figure: Comparison of HSI classifications with various CNNs (Audebert et al, 2019)

Deep Learning on Raster Imagery 41 / 87



Deep learning on SAR Data

How to extend deep learning processing to SAR data ?
@ Specific physics, different from optical images: intensity + phase;
«® High resolution, "cloud-free” images;

o ® presence of "speckle” and changing appearance depending on the angle of view.

Figure: SAR image examples
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Despeckling of SAR Data

Despeckling:
@ Inspired by denoising Denoising Auto-Encoders (Vincent et al., 2010);
@ Auto-encoder learn to reconstruct the image from itself

@ Denoising / despeckling autoencoders learn to reconstruct the image from the image
with added speckle

2 & &
B : "
P = N
& + +
o 5] = :
Noisy Image Residual Tmage Filtered Tmage

Figure: Despeckling auto-encoder (Chierchia et al., 2017)
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Classification of SAR Data

@ Usually straightforward (but do they miss something?);
@ Complex valued CNN for processing intensity + phase images (Haensch & Hellwich,

2010) (Zhang et al., 2010)
A\

Output layered

Conv. layersee”  Pooling
Conv. layersel’ Pooling layersel’ layerse€  Fully connected
layerseid

Figure: SAR classification (Zhang et al., 2017) and (Zhu et al., 2017)
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Object characterization for SAR Data

Similarly to optical imagery, SAR imagery can be exploited in many ways, e.g.

@ ship analysis from Sentinel-1: detection, length estimation, classification

TAput, 2X80X80

conv, 128xB0x80
conv, 256xB0x80
maxpooling, 256x40x40
dropout (0.1)

conv, 256x40x40

maxpooling, 512x20x20

Gropout (0.1)

conv, 512x20x20

Conv, 642020 |

¥
conv, 128x20x20

Conv, 128x20x20

Conv, 642020 |

conv, 256x20x20

conv, 256x20x20

|
|
maxpooling, 256xaxé__|
dropout (0.1) |

[

|

[ maxpooling, 256xaxd
[ dropout (0.1

]
|
|
I

Tanker Cargo Fishing [ T

conv, 256xdxd

conv, 512x4x4

Maxpooling, S12x1x1

maxpooling, S12x1x1

upsampling, 64xB0xB0

|
conv. S12xxe |
|
|

dropout (0.1)

|
[ conv.s12xexe
|
L

dropout (0.1)

|
|
|
|

\
‘ conv, 64x40xd0 ‘
|

Upsampling, 64x40x40
. . =

Conv, Gaxaoxa0 |
Passenger Tug

Figure: Dechesne et al., 2019
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Public resources

Good reads:
o Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of
the Art, Zhang, Zhang and Du, |IEEE Geosci. and Rem. Sens. Mag, 6 (2) June 2016

o Deep learning in remote sensing: A comprehensive review and list of resources,
Zhu, Tuia, Mou, Xia, Zhang, Xu, and Fraundorfer, IEEE Geosci. and Rem. Sens.
Mag, 5 (4) Dec. 2017

o Deep Learning for Classification of Hyperspectral Data: A Comparative
Review, Audebert, Le Saux and Lefévre, IEEE Geosci. and Rem. Sens. Mag., 7 (2)
June 2019
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Public resources

Toolbox:
o DeepNetsForEO (https://github.com/nshaud/DeepNetsForEQ): python code for
semantic segmentation of aerial / satellite imagery
@ DeepHyperX (https://github.com/nshaud/DeepHyperX): python toolbox for
classification of hyperspectral imagery (spectral, spatial-spectral and 3D
convolutions)
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Public resources

Public datasets:
o ISPRS datasets: semantic labeling, reconstruction ~~
https://www.isprs.org/data/
o |IEEE GRSS Data Fusion Contests: http://www.grss-ieee.org/community/
technical-committees/data-fusion/data-fusion-contest/

IEEE GRSS: hyperspectral datasets with standard train/test splits (DFC2018, Pavia,
Indian Pines) ~» http://dase.grss-ieee.org/

@ INRIA Aerial Semantic labeling dataset: buildings ~
https://project.inria.fr/aerialimagelabeling/

XView: objects in aerial images ~» http://xviewdataset.org/

DOTA: Detecting Objects in Aerial images ~~
https://captain-whu.github.io/D0TA/dataset.html
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Practical session jectives

=S

Image

Figure: Let's practice: semantic segmentation of Earth-observation data!

We will:

@ load data and perform data augmentation;
o define a network model

@ train the network on colab’s GPU

@ test the net on some test images and evaluate results
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Practical session: working with colab

& DeepNetsForEOipynb B comer 22 s
Flo &t view nsen Rurtme Toks Hep
CobE B TEXT 4 cEL R ==

~ Semantic segmentation of aerial images with deep networks

Link (in 2 clicks): https://blesaux.github.io/teaching/DL4RS

(epoch 1/2) [7190/2000 (3531 Loss: 8.478730 Accuracy: 88.78936767576125

Figure: That's a good start!
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Capturing a 3D world

@ 3D data crucial for robotics,
autonomous vehicle, 3D scale models,
virtual reality etc...

credit: medium, VisionSystemDesign, microsoft
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Capturing a 3D world

@ 3D data crucial for robotics,
autonomous vehicle, 3D scale models,
virtual reality etc...

@ Can be computed from images: stereo,
SfM, SLAM (cheap, not precise).
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credit: computervisionblog, velodynelidar
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Capturing a 3D world

@ 3D data crucial for robotics,
autonomous vehicle, 3D scale models,
virtual reality etc...

@ Can be computed from images: stereo,
SfM, SLAM (cheap, not precise).

o LiDAR (expensive, precise).
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Capturing a 3D world

@ 3D data crucial for robotics,
autonomous vehicle, 3D scale models,
virtual reality etc...

@ Can be computed from images: stereo,
SfM, SLAM (cheap, not precise).

o LiDAR (expensive, precise).

@ Can be fixed, mobile, aerial,
drone-embarked.
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Capturing a 3D world

@ 3D data crucial for robotics,
autonomous vehicle, 3D scale models,
virtual reality etc...

@ Can be computed from images: stereo,
SfM, SLAM (cheap, not precise).

o LiDAR (expensive, precise).

@ Can be fixed, mobile, aerial,
drone-embarked.

@ Produces a 3D point cloud: P € R™3.

credit: clearpath robotics, tuck mapping solutions
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Capturing a 3D world

@ 3D data crucial for robotics,
autonomous vehicle, 3D scale models,
virtual reality etc...

@ Can be computed from images: stereo,
SfM, SLAM (cheap, not precise).

o LiDAR (expensive, precise).

@ Can be fixed, mobile, aerial,
drone-embarked.

@ Produces a 3D point cloud: P € R™3.

o Large acquisition: n typically in the
10%s.

credit: clearpath robotics, tuck mapping solutions
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Future trends

o LiDAR are getting cheaper :100k$ — 2k$ in a
few years.

credit: velodynelidar, green car congress
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Future trends

o LiDAR are getting cheaper :100k$ — 2k$ in a
few years.

o Also coming: solid state LiDAR (cheap, fast and
resilient), single photon LiDAR (unmatched
acquisition density).

credit: velodynelidar, spar3d
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Future trends

o LiDAR are getting cheaper :100k$ — 2k$ in a
few years.

@ Also coming: solid state LIDAR (cheap, fast and
resilient), single photon LiDAR (unmatched
acquisition density).

o Major industrial application: autonomous
driving, virtual models, land survey...

credit: tuck mapping solutions, clearpath robotics
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Future trends

o LiDAR are getting cheaper :100k$ — 2k$ in a
few years.

@ Also coming: solid state LIDAR (cheap, fast and
resilient), single photon LiDAR (unmatched
acquisition density).

o Major industrial application: autonomous
driving, virtual models, land survey...

@ Also to come: major advances in automatic
analysis of 3D data.

credit: tuck mapping solutions, clearpath robotics
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Future trends

o LiDAR are getting cheaper :100k$ — 2k$ in a
few years.

@ Also coming: solid state LIDAR (cheap, fast and
resilient), single photon LiDAR (unmatched
acquisition density).

o Major industrial application: autonomous
driving, virtual models, land survey...

@ Also to come: major advances in automatic
analysis of 3D data.

@ Rapid progress in harware and methodology +
major applications = a booming field.

credit: tuck mapping solutions, clearpath robotics
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Analysis of 3D point clouds

o Classification: classify the point cloud
among class set K:

P— K

l | Network ]

{ K: mug? &
54 LN
a },{ table? l i
car? £
Classification Part Segmentation ~ Semantic Segmentation

credit: Qi et. al. 2017a

Deep Learning on 3D Point Clouds Presentation of the Problem



Analysis of 3D point clouds

o Classification: classify the point cloud
among class set K:

P— K

@ Partition: cluster the point cloud in C
parts/object:

P [1,-,C]

[ Netvork |
' — '

" mug? &
i LN
»:? "y table?
car? L g
Classification Part Segmentation ~ Semantic Segmentation

credit: Qi et. al. 2017a
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Analysis of 3D point clouds

o Classification: classify the point cloud
among class set K:

P— K

@ Partition: cluster the point cloud in C
parts/object:

P [1,-,C]

[ Nevwork |
L

o Semantic Segmentation: classify each \‘y mug? N
point of a point cloud between K l i
PNt table? -
classes: bl l
car? £ S8 el ;
Pi'_>[17"'7K] I . ) . o
Classification Part Segmentation ~ Semantic Segmentation

credit: Qi et. al. 2017a
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Analysis of 3D point clouds

o Classification: classify the point cloud
among class set K:

P—K
@ Partition: cluster the point cloud in C
parts/object:
Pi— [1’ o C] l | Network | l
o Semantic Segmentation: classify each \‘i mug? N
ploint of a point cloud between K RBs pier l Lt
classes: bl ’
car? w
Pi'_>[17"'7K] . . ) . . .
Classification Part Segmentation ~ Semantic Segmentation

o Instance Segmentation: cluster the
point cloud into semantically
characterized objects:

P (L, , (]

1, ,Cl—[1, K]
credit: Qi et. al. 2017a
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What makes 3D analysis so hard

- Data volume considerable.

credit: Gaidon2016, Engelmann2017, Hackel2017
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What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

credit: Gaidon2016, Engelmann2017, Hackel2017
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What makes 3D analysis so hard

- Data volume considerable.
- Lack of grid-structure.

- Permutation-invariance.

credit: Gaidon2016, Engelmann2017, Hackel2017
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What makes 3D analysis so hard

- Data volume considerable.

Lack of grid-structure.

Permutation-invariance.

- Sparsity.

credit: Gaidon2016, Engelmann2017, Hackel2017
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What makes 3D analysis so ha

- Data volume considerable.

Lack of grid-structure.

- Permutation-invariance.

- Sparsity.
- Highly variable density.

credit: Gaidon2016, Engelmann2017, Hackel2017
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What makes 3D analysis so ha

- Data volume considerable.

Lack of grid-structure.

- Permutation-invariance.

- Sparsity.
- Highly variable density.

- Acquisition artifacts.

credit: Gaidon2016, Engelmann2017, Hackel2017
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What makes 3D analysis so ha

- Data volume considerable.

Lack of grid-structure.

Permutation-invariance.

- Sparsity.
- Highly variable density.
- Acquisition artifacts.

- Occlusions.

credit: Gaidon2016, Engelmann2017, Hackel2017
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Pointwise classification

o Step 1: compute point features based

on neighborhood O O

Lin = 7A1 — VA
VA1
Pla= Y22~ Vs
a= Y2 VA3
A1
Demantke2011 VA3
Sca= —
VA1
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Pointwise classification

@ Step 1: compute point features based
on neighborhood

@ Step 2: classification (RF, SVM, etc...)

Demantke2011
Weimann2015

credit: landrieu et. al. 2017a
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Pointwise classification

@ Step 1: compute point features based
on neighborhood

@ Step 2: classification (RF, SVM, etc...)
@ Step 3: smoothing to increase spatial

regularity (with CRFs, MRFs,
graph-structured optimization, etc...)

Demantke2011
Weimann2015
Landrieu et. al. 2017a

credit: landrieu et. al. 2017a

Traditional Approaches
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Image-Based Methods

@ A simple observation: CNNs works
great for images. Can we use images
for 3D7?
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Image-Based Methods

o A simple observation: CNNs works
great for images. Can we use images
for 3D7

o SnapNet:

Boulch et. al. 2017 credit: Boulch et. al. 2017
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Image-Based Methods

o A simple observation: CNNs works
great for images. Can we use images
for 3D7

o SnapNet:

- surface reconstruction

Boulch et. al. 2017 credit: Boulch et. al. 2017
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Image-Based Methods

A simple observation: CNNs works
great for images. Can we use images
for 3D7

SnapNet:

- surface reconstruction

virtual snapshots

Boulch et. al. 2017 credit: Boulch et. al. 2017
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Image-Based Methods

o A simple observation: CNNs works
great for images. Can we use images
for 3D7

o SnapNet:
- surface reconstruction
- virtual snapshots

- semantic segmentation of resulting
images with CNNs

Boulch et. al. 2017 credit: Boulch et. al. 2017
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Image-Based Methods

o A simple observation: CNNs works
great for images. Can we use images
for 3D7

o SnapNet:

- surface reconstruction

virtual snapshots

semantic segmentation of resulting
images with CNNs

- project prediction back to p.c.

Boulch et. al. 2017 credit: Boulch et. al. 2017
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Voxel-Based Methods

o ldea: generalize 2D convolutions to
regular 3D grids
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Voxel-Based Methods

o ldea: generalize 2D convolutions to
regular 3D grids

@ Voxelization + 3D convNets

Dense 3D ConvNet

s i

Dense 3D ConvNet

Wu2015 credit: Riegler2017, Tchapmi2017, Jampani2017
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Voxel-Based Methods

o ldea: generalize 2D convolutions to
regular 3D grids

@ Voxelization + 3D convNets

o Problem: inefficient representation,
loss of invariance, costly (cubic)

Dense 3D ConvNet

Dense 3D ConvNet

Wu2015 credit: Riegler2017, Tchapmi2017, Jampani2017
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Voxel-Based Methods

z
=
o ldea: generalize 2D convolutions to g
regular 3D grids a
@ Voxelization + 3D convNets é
@ Problem: inefficient representation, 3
loss of invariance, costly (cubic) %
=]
@ Ildea 1: OctNet, OctTree based Lé
approach 2
a
2
8

Wu2015 , Riegler2017 credit: Riegler2017, Tchapmi2017, Jampani2017
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Voxel-Based Methods

o ldea: generalize 2D convolutions to

regu lar 3D grids Point Cloud Trilinear interpolation of scores
&Voxelization Grid from voxel neighbours to points
P

)

o
Won
et

Voxelization + 3D convNets

o Problem: inefficient representation,
loss of invariance, costly (cubic)

@ ldea 1: OctNet, OctTree based
approach

Idea 2: SegCloud, large voxels, g S
subvoxel predictions with CRFs.

3D point, Voxel W CRF unary potentials
@ oaihon 3Dpoints @ Coners  Puiow per pointexel

Wu2015 , Riegler2017 , Tchapmi2017, credit: Riegler2017, Tchapmi2017, Jampani2017
Jampani2018.
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Voxel-Based Methods

o ldea: generalize 2D convolutions to
regular 3D grids

Voxelization + 3D convNets

o Problem: inefficient representation,

loss of invariance, costly (cubic) WavavaY menteton
@ Idea 1: OctNet, OctTree based BRAR

approac h Splat Convolve Slice
o Idea 2: SegCloud, large voxels,

subvoxel predictions with CRFs.
o Idea 3: SplatNet, sparse convolutions

with hashmaps.

Wu2015 , Riegler2017 , Tchapmi2017, credit: Riegler2017, Tchapmi2017, Jampani2017

Jampani2018.
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3D Convolution-Based Methods

o ldea: generalize 2D convolutions to 3D
point clouds as unordered data.
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3D Convolution-Based Methods

o ldea: generalize 2D convolutions to 3D
point clouds as unordered data.
@ Tangent Convolution: 2D convolution
in the tangent space of each point.

Tatarchenko2018 credit: Tatarchenko2018, Li2018
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3D Convolution-Based Methods

o ldea: generalize 2D convolutions to 3D
point clouds as unordered data.

@ Tangent Convolution: 2D convolution
in the tangent space of each point.

@ PointCNN : y-convolutions:
generalized convolutions for unordered
inputs.

Tatarchenko2018 , Li2018.

Deep Learning on 3D Point Clouds

{ Conv } o9 { Conv } L 5% 9% )

F, p
K "JK:

{ xconv}

]Fl ]FZ

credit: Tatarchenko2018, Li2018
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3D Convolution-Based Methods

o ldea: generalize 2D convolutions to 3D
point clouds as unordered data. o8 8 ‘e’e’
. . { Conv } o o o —(comw} «n e
o Tangent Convolution: 2D convolution e 2%
in the tangent space of each point. k. )
@ PointCNN : y-convolutions: - JK
generalized convolutions for unordered
inputs. [ 2c-conv}
@ Principle: the network learns how to _
permute ordered inputs F F.
Tatarchenko2018 , Li2018. credit: Tatarchenko2018, Li2018
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3D Convolution-Based Methods

Idea: generalize 2D convolutions to 3D

point clouds as unordered data. o8 8 ‘e’e’
. . { Conv } o o o —(comw} e
Tangent Convolution: 2D convolution ‘e 2%

NTNN

in the tangent space of each point. k.

PointCNN : y-convolutions: - JK
generalized convolutions for unordered
inputs.

{ xconv}

@ Principle: the network learns how to _
permute ordered inputs F, Fy

@ The invariance is learnt!

Tatarchenko2018 , Li2018. credit: Tatarchenko2018, Li2018
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Graph-Neural Network

o Generalize convolutions to the general
graph setting.

Hidden layer Hidden layer
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Graph-Neural Network

o Generalize convolutions to the general
graph setting.

@ For example: k-nearest neighbors graph
of 3D points.

Hidden layer Hidden layer

Input Output

Qi2017, Simonovski2017
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Graph-Neural Network

o Generalize convolutions to the general
graph setting.

@ For example: k-nearest neighbors graph
of 3D points.

o ldea: Each point maintain a hidden
state h; influenced by its neighbors.

Hidden layer Hidden layer

Input Output

Qi2017, Simonovski2017
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Graph-Neural Network

o Generalize convolutions to the general
graph setting.

@ For example: k-nearest neighbors graph
of 3D points.

o ldea: Each point maintain a hidden
state h; influenced by its neighbors.

o GNN Qi2017: an iterative
message-passing algorithm using a
mapping f and a RNN g:

WD = g(37 (k). hY)

Jj—=i

Hidden layer Hidden layer

Input Output

Qi2017, Simonovski2017 credit: Qi2017
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Graph-Neural Network

o Generalize convolutions to the general
graph setting.

@ For example: k-nearest neighbors graph

of 3D points.
o ldea: Each point maintain a hidden L, i \®/ N
state h; influenced by its neighbors. gn;';;";rkg
o GNN Qi2017: an iterative P \k?/’
e
message-passing algorithm using a . *
mapping f and a RNN g: ¥ .
X1 ol X1-1(1)
+1 XI-1(2) oL, X1(2)
hgt )= g(z f(hi), hi) X © oLxT® | |
Jsi XI-1(5) oL, X1 (5)
disy @ +b
.
o ECC Simonovski2017 messages are S0
conditioned by edge features:
B = g(Z ©;; ® h, hf)
J—i
Qi2017, Simonovski2017 credit: Simonovski2017
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PointNet

@ A cornerstone of modern 3D analysis

Qi et. al.2017a
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PointNet

@ A cornerstone of modern 3D analysis

o A fondamental constraint: inputs are invariant by permutation

Qi et. al.2017a
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@ A cornerstone of modern 3D analysis

A fondamental constraint: inputs are invariant by permutation

Solution: process points independently, apply permutation-invariant pooling,
process this feature with a MLP.

Computes a global shape descriptor.

n: number of points, k size of observations, el size of intermediary embeddings,
el size of output

Pn p— M;Pl — fa
shared  buax MLP, —[om
Po |— MliPl — fo mx1 Ix1
nx k nxm
Qi et. al.2017a
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PointNet |1

@ Point function: activate at different
parts of the unit cube, learned spatial
features.

0GP
ACAvaTAvLY
QA QY
Vo AATAVAY
VLA tAnY

Deep Learning on 3D Point Clouds PointNet - set-based approach



PointNet |1

o Point function: activate at different
parts of the unit cube, learned spatial
features.

Original Shape

o Critical Set: points selected in the
maxpool step. makes up a skeletton

Upper-bound Shapes ~ Critical Point Sets
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PointNet |1

o Point function: activate at different
parts of the unit cube, learned spatial
features.

Original Shape

o Critical Set: points selected in the
maxpool step. makes up a skeletton

o Upper Bound Shape: maximal point
cloud with exactly the same global
embedding

Upper-bound Shapes ~ Critical Point Sets
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PointNet for Cloud embedding

@ point_input;: point features (coordinate, color, etc...)

pn f— MLP; —> fa
shared . = MAX MLP; out
po p—— MLP; —| fo mx1 I x1
nxk nxm
Qi et. al.2017a
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PointNet for Cloud embedding

@ point_input;: point features (coordinate, color, etc...)

@ point_embedding; = MLP;(point_input,)

pn f— MLP; —> fa
shared . = MAX MLP; out
po p—— MLP; —| fo mx1 I x1
nxk nxm
Qi et. al.2017a
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PointNet for Cloud embedding

@ point_input;: point features (coordinate, color, etc...)
@ point_embedding; = MLP;(point_input,)
o global_embeding = max;(point_embedding;)

pn f— MLP; —> fa
shared . = MAX MLP; out
po p—— MLP; —| fo mx1 I x1
nxk nxm
Qi et. al.2017a
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PointNet for Cloud embedding

@ point_input;: point features (coordinate, color, etc...)
@ point_embedding; = MLP;(point_input,)

o global_embeding = max;(point_embedding;)

o cloud_embeding = MLP>(global_embedding)

Pn f—— MLP, — fn
shafred . = MAX MLP, out
Po — ML:Pl — fo mx1 Ix1
nx k nxm

Qi et. al.2017a
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PointNet for Semantic Segmentation

° point,embeddingﬁl) = MLP;(point_input,)

MLP; = V) |— MLP, — £
shajred : sha{red T > MAX —)II'
(oo} MiPy— £ — mip, —f £@

fO N Fl—MLPs =,

sha_red
Qi et. al.2017a :

fO | F—mips =
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PointNet for Semantic Segmentation

° point,embeddingﬁl) = MLP;(point_input,)
° point,embedding§2) = MLPg(point,embeddingsl))

MLP; = V) |— MLP, — £
shajred : sha{red T > MAX —)II'
(oo} MiPy— £ — mip, —f £@

fO N Fl—MLPs =,

sha_red
Qi et. al.2017a :

fO | F—mips =
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PointNet for Semantic Segmentation

° point,embeddingﬁl) = MLP;(point_input,)

° point,embedding§2) = MLPg(point,embeddingsl))
(2))

i

@ global_embeding = max;(point_embedding

MLP; = V) |— MLP, — £
shajred : sha{red T > MAX —)II'
(oo} MiPy— £ — mip, —f £@

fO N Fl—MLPs =,

sha_red
Qi et. al.2017a :

£ | F—mips =
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PointNet for Semantic Segmentation

° point,embeddingﬁl) = MLP;(point_input,)

° point,embedding§2) = MLPg(point,embeddingsl))

@ global_embeding = max;(point_embedding

(2))

i

@ point_logit; = MLP3([global_embedding, point,embeddinggl)])

L wax — 7]

Fl— mLps — 1,

sha_red

MLP; = V) |— MLP, — £
shajred sha{red
(oo} MiPy— £ — mip, —f £@
Y
Qi et. al.2017a
fo(l)

Fl—mip, — &
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PointNet for Semantic Segmentation

° point,embeddingﬁl) = MLP;(point_input,)

° point,embedding§2) = MLPg(point,embeddingsl))
(2))

@ global_embeding = max;(point_embedding;
@ point_logit; = MLP3([global_embedding, point_embedding!"])

i
@ point_classif;, = softmax(point_logit;)

MLP; = V) |— MLP, — £
shajred : sha{red T > MAX —)II'
(oo} MiPy— £ — mip, —f £@

——

O | Fl—MLPs — I,

sha_red

Qi et. al.2017a

£ | F—mips =
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Why we need to scale

o Problem: best approaches are very
memory-hungry and the data volumes
are huge.
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Why we need to scale

o Problem: best approaches are very
memory-hungry and the data volumes
are huge.

@ Previous methods only works with a
few thousands points.
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Why we need to scale

o Problem: best approaches are very
memory-hungry and the data volumes
are huge.

@ Previous methods only works with a
few thousands points.

o Naive strategies:

- Aggressive subsampling: loses a lot of
information.
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Why we need to scale

o Problem: best approaches are very
memory-hungry and the data volumes
are huge.

@ Previous methods only works with a
few thousands points.

o Naive strategies:

- Aggressive subsampling: loses a lot of
information.

- Sliding windows: loses the global
structure.

credit: tuck mapping solution
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PointNet+-+

@ Pyramid structure for
multi-scale feature extraction.

—> B — y —>

—

sampling & pointnet ~ sampling &~ pointnet
grouping grouping
Qi et. al.2017b credit: Qi et. al.2017b
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PointNet+-+

@ Pyramid structure for
multi-scale feature extraction.

o From local to global with with
increasingly abstract features.

—

—>

— —

sampling & pointnet ~ sampling& ~ pointnet
grouping grouping
Qi et. al.2017b credit: Qi et. al.2017b
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SuperPoint-Graph

o Observation:
Npoints > Nobjects-

Landrieu&Simonovski2018
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SuperPoint-Graph

o Observation:
Npoints > Nobjects-

o Partition scene into
superpoints with
simple shapes.

Landrieu&Simonovski2018
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SuperPoint-Graph

o Observation:
Npoints > Nobjects-

o Partition scene into
superpoints with
simple shapes.

@ Only a few
superpoints, context
leveraging with
powerful graph
methods.

Landrieu&Simonovski2018
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Step Complexity Algorithm
Geometric Partition very high / .
into simple shapes 108 points o-cut pursuit
Sup_erpomt embed.dmg . low _ PointNet
learning shape descriptors subsampling to 128 points
Contextual Segmentation very low ECC
leveraging the global structure ~ 1000 vertices with GRUs

Deep Learning on 3D Point Clouds
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Pipeline

point

—_— Voronoi Edge

(a) Point cloud

Deep Learning on 3D Point Clouds

superpoint

«—> superedge

(b) Superpoint graph

embeddings

(c) Convolution Network

egmentation

table

table

table

chair
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Main Annotated Academic Datasets

@ Semantic3D:
outdoor, fixed LiDAR,
4 x 10° points

credit: Armeni2016, Gaidon2016, Engelmann2017, Hackel2017
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Main Annotated Academic Datasets

@ Semantic3D:
outdoor, fixed LiDAR,
4 x 10° points

@ S3DIS: indoor, fixed
LiDAR, 6 x 10® points

credit: Armeni2016, Gaidon2016, Engelmann2017, Hackel2017
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Main Annotated Academic Datasets

@ Semantic3D:
outdoor, fixed LiDAR,
4 x 10° points

@ S3DIS: indoor, fixed
LiDAR, 6 x 10® points

o vKITTI: embarked,
virtual LiDAR,
2 x 10® points.

credit: Armeni2016, Gaidon2016, Engelmann2017, Hackel2017
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Main Annotated Academic Datasets

@ Semantic3D:
outdoor, fixed LiDAR,
4 x 10° points

@ S3DIS: indoor, fixed
LiDAR, 6 x 10® points

o vKITTI: embarked,
virtual LiDAR,
2 x 10® points.

o GRSS: aerial LIiDAR,
~ 107 points.

credit: Armeni2016, Gaidon2016, Engelmann2017, Hackel2017
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In practice

@ Which one is the best? Depends on your problem.
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In practice

@ Which one is the best? Depends on your problem.
- PointCNN works very well for smaller clouds

- SPG for large problems with a global structure
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In practice

@ Which one is the best? Depends on your problem.

- PointCNN works very well for smaller clouds

- SPG for large problems with a global structure

- New contenders weekly: PointSIFT, etc...

o Which algorithm to chose in practice:

- Start with a simple PointNet + sliding window baseline
- Move on to PointCNN/PointSIFT if precision is an issue
- Move on to SPG for scaling/global structure.
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In practice

@ Which one is the best? Depends on your problem.

- PointCNN works very well for smaller clouds

- SPG for large problems with a global structure

- New contenders weekly: PointSIFT, etc...

o Which algorithm to chose in practice:

- Start with a simple PointNet + sliding window baseline
- Move on to PointCNN/PointSIFT if precision is an issue
- Move on to SPG for scaling/global structure.

o Pay attention near big conferences (CVPR, ICCV), new models released constantly.
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Future of the Field

% :nnrms.lnnllnn 3 % Pnummg @q’ .‘ - E encoding -

o Efficient auto-encoders for
semi-supervized learning Zhu2016
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Future of the Field

normalization Pnummg @q’ Q \ E encoding -
= - =
, , Valnain

o Efficient auto-encoders for
semi-supervized learning Zhu2016

@ Real-time analysis for dynamic 3D data
for autonomous driving
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Future of the Field

% :nnrms.lnnllnn g % pnuemng @% .‘ - u enc&ding -

o Efficient auto-encoders for
semi-supervized learning Zhu2016

@ Real-time analysis for dynamic 3D data
for autonomous driving

@ Deep learning for other remote sensing
tasks: segmentation, object detection,
surface reconstruction. Groueix2018

@) Textured Output )3 Pinted Output

Deep Learning on 3D Point Clouds In Practice
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Public resources

Today:
@ Neural Net Basics
@ Deep Learning in 2D Remote Sensing
@ Deep Learning in 3D Remote Sensing

Thanks for you attention!

Comments and questions after the course:
Loic.Landrieu@ign.fr and bertrand.le_saux@onera.fr
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