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Bertrand Le Saux

Researcher at ONERA (French Aerospace Laboratory), Univ. Paris Saclay

Focus: deep learning for remote sensing, robotics and perception

Chair of IEEE GRSS Tech. Committee on Image Analysis and Data Fusion:
http://www.grss-ieee.org/community/technical-committees/data-fusion/

Co-organizer of the Data Fusion Contests since 2016:
http://www.grss-ieee.org/community/technical-committees/data-fusion/
2019-ieee-grss-data-fusion-contest/

CVPR/EarthVision 2019 co-organizer:
https://www.grss-ieee.org/earthvision2019/

Web: https://blesaux.github.io/
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Loic Landrieu

Researcher at the French Mapping Agency in the machine learning department
STRUDEL.

Focus: using the data-structure to increase precision and speed of learning methods.

PhD: learning and optimization on large graphs at INRIA (Bach/Obozinski).

Current projects:

- Analysis of very large point clouds.

- Real-time analysis for autonomous vehicles.

- Superspectral satellite imagery time-sequences analysis.

- Learning on huge graphs.
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Deep Learning basics

Motivation: sufficient data trumps expertise.

Main idea: replace all handcrafted features (SIFTs, HOGs, etc...) with learned ones.

Each unit (or neuron) is simple, the network architecture is complex.

The network architecture must represent the structure of the data.

AT NO POINT ARE ARTIFICIAL NEURAL NETWORKS SUPPOSED TO
MODEL AN ACTUAL NEURON/BRAIN.

credit : jeremyjordan.me
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Artificial Neuron

y = f (
∑

i wixi )

xi : inputs

wi : weights

f : non-linearity

y : outputs

In short : a matrix product X ᵀW and
non-linearity.

Non linearity essential (or else simplifies
to a matrix product).

f = sigmoid, Relu=max(0, x).

x1

x2

x3

f y

w1

w2

w3
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Multilayer Perceptron

Organization in layers

the deeper layers extracts more
complicated / abstract features

Very old model, exists since the 50s

Universal Approximation Theorem:
any functions of x can be approximated
to arbitrary precision by a MLP with
sufficient width.

Simple model, no assumption
whatsoever on the data structure.

credit : pubs.sciepub.com/ajmm
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Learning with Neural Networks

Training a neural network: finding
values for the weights w such that
output y is close to a ground truth
value ŷ .

We define a loss function L(y(w), ŷ)
decreasing with the precision (for
example: ‖y − ŷ‖2, cross-entropy).

L is usually an (almost) differentiable
function but is generally nonconvex.

However, we can find good weights
with Stochastic Gradient Descent.

Automatic differentiation: gradients are
easily computed and propagated
(”backprop”).

Supervized learning, require a lot of
high quality annotations.

credit : exortech.github.io
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example: ‖y − ŷ‖2, cross-entropy).

L is usually an (almost) differentiable
function but is generally nonconvex.

However, we can find good weights
with Stochastic Gradient Descent.

Automatic differentiation: gradients are
easily computed and propagated
(”backprop”).

Supervized learning, require a lot of
high quality annotations.

credit : exortech.github.io

Deep Learning Basics 10 / 87



Convolutional Neural Network

Problem: the size of W increase
quadratically with the layers’ size

100× 100 image : 108 parameters per
layer! Unmanageable.

Solution: local convolutions: values of
a layer only depend on a small number
of points in the previous layer (the
receptive field).

Paired with Pooling layers which
decrease the size of the feature maps.

Very successful for images, exploits the
spatial structure.

credit : pubs.sciepub.com/ajmm

Deep Learning Basics 11 / 87



Convolutional Neural Network

Problem: the size of W increase
quadratically with the layers’ size

100× 100 image : 108 parameters per
layer! Unmanageable.

Solution: local convolutions: values of
a layer only depend on a small number
of points in the previous layer (the
receptive field).

Paired with Pooling layers which
decrease the size of the feature maps.

Very successful for images, exploits the
spatial structure.

credit : pubs.sciepub.com/ajmm

Deep Learning Basics 11 / 87



Convolutional Neural Network

Problem: the size of W increase
quadratically with the layers’ size

100× 100 image : 108 parameters per
layer! Unmanageable.

Solution: local convolutions: values of
a layer only depend on a small number
of points in the previous layer (the
receptive field).

Paired with Pooling layers which
decrease the size of the feature maps.

Very successful for images, exploits the
spatial structure.

credit : cs231n.github.io

Deep Learning Basics 11 / 87



Convolutional Neural Network

Problem: the size of W increase
quadratically with the layers’ size

100× 100 image : 108 parameters per
layer! Unmanageable.

Solution: local convolutions: values of
a layer only depend on a small number
of points in the previous layer (the
receptive field).

Paired with Pooling layers which
decrease the size of the feature maps.

Very successful for images, exploits the
spatial structure.

credit : cs231n.github.io

Deep Learning Basics 11 / 87



Convolutional Neural Network

Problem: the size of W increase
quadratically with the layers’ size

100× 100 image : 108 parameters per
layer! Unmanageable.

Solution: local convolutions: values of
a layer only depend on a small number
of points in the previous layer (the
receptive field).

Paired with Pooling layers which
decrease the size of the feature maps.

Very successful for images, exploits the
spatial structure.

credit : cs231n.github.io

Deep Learning Basics 11 / 87



Convolutional Neural Network II

Traditional structure:

- Sequence of (Conv + Pool) units to compute local features and decrease
embeddings size

- One (or two) fully connected MLP at the end to analyze the whole image.

- Deep structures seem to work best.

credit: adeshpande3.github.io
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Recurrent Neural Network

Objective: modeling temporal structure

General idea: the network maintains a hidden state ht called memory

Update: ht+1 = f (ht , xt)

There exists many type of RNNs: LSTMs, GRUs, etc...

Can also be used to model spatial structure.

Successful for sequence learning in natural language processing, speech recognition,
etc.
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Deep Learning In Practice

Tensorflow, Pytorch: high level python-based language doing all the tedious work.

Example for a 1 hidden later MLP to classify D-dimension data between K classes.

layer1 = Linear(D,L), layer2= Linear(L,K)

optimizer = SGD()

for i epoch in range(n epoch):

for batch, gt in enumerate(training set) % batch :B × D, gt : B

feat = Relu(layer1(batch)) % feat : B × L

feat = Relu(layer2(feat)) % feat : B × K

output = softmax(feat) % output: B × K

loss = cross entropy(output, gt) % compute the loss

loss.backward() % compute the gradient

optimizer.step(i epoch) % gradient step

print("epoch = epoch, loss = avg loss) % monitor loss decrease

return softmax(Relu(layer2(Relu(layer1(test set)))))
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Deep Learning on Raster Imagery

In the next hour, we will get insight on:

Motivation for Deep Learning on Raster Imagery

Semantic Segmentation Fully-conv. Networks

Multi-modal Classification

Object Detection

Change Detection and Multi-temporal Analysis

Classif. of Hyperspectral Data

Deep Learning on SAR Data

Resources

Practical Session: Semantic Segmentation

Bibliography 2D
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Deep Learning on Raster Imagery

Lots of common application in everyone’s life:

Self-driving cars Facebook’s facial recognition

Google Translate... images Painting like Monet!

Figure: Applications of Deep Learning
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Deep Learning on Raster Imagery

So... what can we do in remote sensing?

Figure: Can we understand and translate images to cartography?
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Motivation for Deep Learning on Raster Imagery

Figure: An history of classification in remote sensing
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Motivation for Deep Learning on Raster Imagery

In some specific cases, standard machine learning approaches or sensor-based
heuristics are well enough...

but Convolutional Neural Networks make good generic classifiers

Figure: Benchmarking old-school vs. deep learning methods (Campos-Taberner et al., 2016)
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Simple Deep Learning Baseline

Figure: Benchmarking old-school vs. deep learning methods (Campos-Taberner et al., 2016)
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Fully-Convolutional Networks

Remote Sensing processing:

Extract patches from the image using
a sliding window with overlap

Train on images with ground-truth

Apply on test patches (average several
predictions on overlapping pixels)

Classification: 1 image (or local
patch in remote sensing) −→ 1 label

Segmentation: 1 pixel −→ 1 label

Image = structured pixel ensemble
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Fully-Convolutional Networks

AlexNet CNN for classification (Krizhevsky et al., 2012)

Fully-convolutional AlexNet for semantic segmentation (Long et al., 2015)

Figure: Fully-convolutional networks (FCNs)
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Fully-Convolutional Networks

SegNet: A deep convolutional Encoder-Decoder architecture for Image
Segmentation (Bandrinarayanan et al., 2016)

And today: U-Net (Ronneberger et al., 2015), Hourglass (Newell et al. 2016))
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Fully-Convolutional Networks

IR/R/G 10cm/pixel Ground-truth SegNet

Figure: SegNet semantic segmentation (Audebert et al., 2017a)
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Multi-modal Semantic Segmentation

How to automatically generate maps from aerial imagery?

Non-standard (yet complimentary) imagery: multispectral, LiDAR...

Auxiliary data: existing open-source maps (OpenStreetMap, etc.)
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Multi-modal Semantic Segmentation

How to automatically generate maps from aerial imagery?

Dual-stream networks which translate data to representations (coding)...

Fusion and decoding from representations to maps
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Multi-modal Semantic Segmentation

IR/R/G Ground-truth IR/R/G pred. IR/R/G +DSM pred.

Figure: Multimodal semantic segmentation results (Audebert et al., 2017a)

Sensor-based information helps!
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Multi-modal Semantic Segmentation

How to automatically generate maps from aerial imagery using auxiliary maps?

Incorporate information to guide the process, FuseNet: (Hazirbas et al., 2016)

Faster training and better results!

Figure: Joint learning of RGB imagery and OSM (Audebert et al., 2017b)
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Multi-modal Semantic Segmentation

Figure: RGB+OSM semantic segmentation results (Audebert et al., 2017b)
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Object Detection

Any generic detection network (e.g. Faster-RCNN) can be fine-tuned to fit user’s needs,
e.g.:

mapping and monitoring marine turtles from UAVs in environmental surveys

detecting accessibility signs to map related parking lots

detect and map buried networks from geophysical data (ground-penetrating radar)

Turtle detection Accessibility mapping Buried network detection
WIPSEA (Nassar & Lefèvre, 2019) (Pham & Lefèvre, 2018)
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Change detection

How to extend semantic analysis to multi-temporal data ?

detect changes

monitor activity in high-revisit rate acquisitions

focus on specific changes (urban, agriculture, vehicles, industrial activity...)

Date 1 Date 2 Change map
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Change detection

How to extend semantic analysis to multitemporal data ?

As before, simply concatenating images...

Or with siamese networks, i.e. dual stream nets which share weights.

Standard CNN U-Net Siamese network

Figure: CNN / FCN architectures for change detection. (Daudt et al., 2018)

Deep Learning on Raster Imagery 33 / 87



Change detection

Figure: Semantic change detection. (Daudt et al., 2019)

Semantic change detection:

Joint multi-task learning of semantics
and differences with FCNs

Prediction of land cover and change
maps
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Change Detection

Siamese networks can work with very different inputs! (e.g. ground vs aerial imagery)

Siamese Network Change ?

Figure: Multiview change detection (Lefèvre et al. 2017)
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Multi-temporal Analysis

Recurrent Neural Networks

Figure: Multi-Temporal Land Cover Classification with Recurrent Auto-encoders (Russwurm &
Köner, 2018)
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Classification of Hyperspectral Data

How to extend semantic analysis to hyperspectral imaging (HSI) data ?

RGB to 100+ bands, image to data cube;

finer spectral description, out-of-visible;

lower resolution but finer class discrimination (materials, stressed or healthy
vegetation...)

Figure: Hyperspectral data cube: Houston (Texas, USA) – IEEE GRSS IADF TC’s Data Fusion Contest 2018
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Classification of Hyperspectral Data

CNN architectures adapted to HSI classification:

1D CNN: spectrum classification

1D RNN: spectral sequence classification

Figure: CNN 1D
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Classification of Hyperspectral Data

CNN architectures adapted to HSI classification:

Spatial-spectral, 2D+1D approaches

Reduce to RGB-like data + 2D CNN

PCA or supervised reduction : alternate 2D and 1D convolutions

Figure: CNN 2D+1D (Lee et al., 2016)
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Classification of Hyperspectral Data

CNN architectures adapted to HSI classification:

End-to-end 3D pattern recognition: apply learnable (w, h, B) filters on the
hypercube

Figure: CNN 3D (Audebert et al, 2019)
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Classification of Hyperspectral Data

HSI classification with CNNs:

Figure: Comparison of HSI classifications with various CNNs (Audebert et al, 2019)
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Deep learning on SAR Data

How to extend deep learning processing to SAR data ?

Specific physics, different from optical images: intensity + phase;

High resolution, ”cloud-free” images;

Presence of ”speckle” and changing appearance depending on the angle of view.

Figure: SAR image examples

Deep Learning on Raster Imagery 42 / 87



Despeckling of SAR Data

Despeckling:

Inspired by denoising Denoising Auto-Encoders (Vincent et al., 2010);

Auto-encoder learn to reconstruct the image from itself

Denoising / despeckling autoencoders learn to reconstruct the image from the image
with added speckle

Figure: Despeckling auto-encoder (Chierchia et al., 2017)
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Classification of SAR Data

Usually straightforward (but do they miss something?);
Complex valued CNN for processing intensity + phase images (Haensch & Hellwich,
2010) (Zhang et al., 2010)

Figure: SAR classification (Zhang et al., 2017) and (Zhu et al., 2017)
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Object characterization for SAR Data

Similarly to optical imagery, SAR imagery can be exploited in many ways, e.g.

ship analysis from Sentinel-1: detection, length estimation, classification

Institut Mines-Télécom

Context

Dataset

Framework

Results

Conclusion

Dataset

Tanker Cargo Fishing

Passenger Tug

⌅ 9/24 Sébastien Lefèvre ⌅ 19–21 February 2019 BiDS 2019

conv, 64x20x20

upsampling, 64x40x40

Detection

conv, 256x20x20

conv, 512x4x4

conv, 256x4x4

conv, 128x20x20 conv, 128x20x20

+

+

+

conv, 128x80x80

maxpooling, 512x20x20

Input, 2x80x80

Figure: Dechesne et al., 2019
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Public resources

Good reads:

Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of
the Art, Zhang, Zhang and Du, IEEE Geosci. and Rem. Sens. Mag, 6 (2) June 2016

Deep learning in remote sensing: A comprehensive review and list of resources,
Zhu, Tuia, Mou, Xia, Zhang, Xu, and Fraundorfer, IEEE Geosci. and Rem. Sens.
Mag, 5 (4) Dec. 2017

Deep Learning for Classification of Hyperspectral Data: A Comparative
Review, Audebert, Le Saux and Lefèvre, IEEE Geosci. and Rem. Sens. Mag., 7 (2)
June 2019
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Public resources

Toolbox:

DeepNetsForEO (https://github.com/nshaud/DeepNetsForEO): python code for
semantic segmentation of aerial / satellite imagery

DeepHyperX (https://github.com/nshaud/DeepHyperX): python toolbox for
classification of hyperspectral imagery (spectral, spatial-spectral and 3D
convolutions)
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Public resources

Public datasets:

ISPRS datasets: semantic labeling, reconstruction  
https://www.isprs.org/data/

IEEE GRSS Data Fusion Contests: http://www.grss-ieee.org/community/

technical-committees/data-fusion/data-fusion-contest/

IEEE GRSS: hyperspectral datasets with standard train/test splits (DFC2018, Pavia,
Indian Pines)  http://dase.grss-ieee.org/

INRIA Aerial Semantic labeling dataset: buildings  
https://project.inria.fr/aerialimagelabeling/

XView: objects in aerial images  http://xviewdataset.org/

DOTA: Detecting Objects in Aerial images  
https://captain-whu.github.io/DOTA/dataset.html
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Practical session: objectives

ß

Image Map

Figure: Let’s practice: semantic segmentation of Earth-observation data!

We will:

load data and perform data augmentation;

define a network model

train the network on colab’s GPU

test the net on some test images and evaluate results
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Practical session: working with colab

Link (in 2 clicks): https://blesaux.github.io/teaching/DL4RS

Figure: That’s a good start!
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and OpenStreetMap Data to Get Faster Better Semantic Maps. CVPR/EarthVision, 2017
Daudt et al., 2018 Daudt, Le Saux and Boulch, Fully Convolutional Siamese Networks for
Change Detection, ICIP, 2018
Daudt et al., 2019 Daudt, Le Saux, Boulch and Gousseau, High Resolution Semantic Change
Detection, to appear, 2019
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Capturing a 3D world

3D data crucial for robotics,
autonomous vehicle, 3D scale models,
virtual reality etc...

Can be computed from images: stereo,
SfM, SLAM (cheap, not precise).

LiDAR (expensive, precise).

Can be fixed, mobile, aerial,
drone-embarked.

Produces a 3D point cloud: P ∈ Rn×3.

Large acquisition: n typically in the
108s.
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Future trends

LiDAR are getting cheaper :100k$→ 2k$ in a
few years.

Also coming: solid state LiDAR (cheap, fast and
resilient), single photon LiDAR (unmatched
acquisition density).

Major industrial application: autonomous
driving, virtual models, land survey...

Also to come: major advances in automatic
analysis of 3D data.

Rapid progress in harware and methodology +
major applications = a booming field.
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Analysis of 3D point clouds

Classification: classify the point cloud
among class set K:

P 7→ K

Partition: cluster the point cloud in C
parts/object:

Pi 7→ [1, · · · ,C ]

Semantic Segmentation: classify each
point of a point cloud between K
classes:

Pi 7→ [1, · · · ,K ]

Instance Segmentation: cluster the
point cloud into semantically
characterized objects:

Pi 7→ [1, · · · ,C ]

[1, · · · ,C ] 7→ [1, · · · ,K ]

Deep Learning on 3D Point Clouds Presentation of the Problem 59 / 87
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What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity.

- Highly variable density.

- Acquisition artifacts.

- Occlusions.

Deep Learning on 3D Point Clouds Presentation of the Problem 60 / 87
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Pointwise classification

Step 1: compute point features based
on neighborhood

Step 2: classification (RF, SVM, etc...)

Step 3: smoothing to increase spatial
regularity (with CRFs, MRFs,
graph-structured optimization, etc...)

Lin =

√
λ1 −

√
λ2√

λ1

Pla =

√
λ2 −

√
λ3√

λ1

Sca =

√
λ3√
λ1
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Image-Based Methods

A simple observation: CNNs works
great for images. Can we use images
for 3D?

SnapNet:

- surface reconstruction

- virtual snapshots

- semantic segmentation of resulting
images with CNNs

- project prediction back to p.c.

Deep Learning on 3D Point Clouds First Deep-Learning Approaches 64 / 87
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Voxel-Based Methods

Idea: generalize 2D convolutions to
regular 3D grids

Voxelization + 3D convNets

Problem: inefficient representation,
loss of invariance, costly (cubic)

Idea 1: OctNet, OctTree based
approach

Idea 2: SegCloud, large voxels,
subvoxel predictions with CRFs.

Idea 3: SplatNet, sparse convolutions
with hashmaps.

Deep Learning on 3D Point Clouds First Deep-Learning Approaches 65 / 87
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3D Convolution-Based Methods

Idea: generalize 2D convolutions to 3D
point clouds as unordered data.

Tangent Convolution: 2D convolution
in the tangent space of each point.

PointCNN : χ-convolutions:
generalized convolutions for unordered
inputs.

Principle: the network learns how to
permute ordered inputs

The invariance is learnt!

Deep Learning on 3D Point Clouds First Deep-Learning Approaches 66 / 87

Tatarchenko2018 , Li2018.
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Graph-Neural Network

Generalize convolutions to the general
graph setting.

For example: k-nearest neighbors graph
of 3D points.

Idea: Each point maintain a hidden
state hi influenced by its neighbors.

GNN Qi2017: an iterative
message-passing algorithm using a
mapping f and a RNN g :

h
(t+1)
i = g(

∑
j→i

f (ht
i ), h

t
i )

ECC Simonovski2017 messages are
conditioned by edge features:

h
(t+1)
i = g(

∑
j→i

Θi,j � ht
i , h

t
i )
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PointNet

A cornerstone of modern 3D analysis

A fondamental constraint: inputs are invariant by permutation

Solution: process points independently, apply permutation-invariant pooling,
process this feature with a MLP.

Computes a global shape descriptor.

n: number of points, k size of observations, e(i) size of intermediary embeddings,
e(f ) size of output

p0

pn

...

f0

fn

...

MLP1

MLP1

shared FMAX outMLP2

n × k n ×m

m × 1 l × 1
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PointNet II

Point function: activate at different
parts of the unit cube, learned spatial
features.

Critical Set: points selected in the
maxpool step. makes up a skeletton

Upper Bound Shape: maximal point
cloud with exactly the same global
embedding
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PointNet for Cloud embedding

point inputi : point features (coordinate, color, etc...)

point embeddingi = MLP1(point inputi )

global embeding = maxi (point embeddingi )

cloud embeding = MLP2(global embedding)

p0

pn

...

f0

fn

...

MLP1

MLP1

shared FMAX outMLP2

n × k n ×m

m × 1 l × 1
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PointNet for Semantic Segmentation

point embedding
(1)
i = MLP1(point inputi )

point embedding
(2)
i = MLP2(point embedding

(1)
i )

global embeding = maxi (point embedding
(2)
i )

point logiti = MLP3([global embedding, point embedding
(1)
i ])

point classifi = softmax(point logiti )

p0

pn

...

f
(1)

0

f
(1)
n

...

MLP1

MLP1

shared

f
(2)

0

f
(2)
n

...

MLP2

MLP2

shared MAX F

f
(1)

0

f
(1)
n

...

F

F

...

l0

ln

...

MLP3

MLP3

shared
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Why we need to scale

Problem: best approaches are very
memory-hungry and the data volumes
are huge.

Previous methods only works with a
few thousands points.

Naive strategies:

- Aggressive subsampling: loses a lot of
information.

- Sliding windows: loses the global
structure.
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PointNet++

Pyramid structure for
multi-scale feature extraction.

From local to global with with
increasingly abstract features.
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SuperPoint-Graph

Observation:
npoints � nobjects.

Partition scene into
superpoints with
simple shapes.

Only a few
superpoints, context
leveraging with
powerful graph
methods.
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Pipeline

Step Complexity Algorithm
Geometric Partition very high

`0-cut pursuit
into simple shapes 108 points

Superpoint embedding low
PointNet

learning shape descriptors subsampling to 128 points
Contextual Segmentation very low ECC

leveraging the global structure ∼ 1000 vertices with GRUs
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Pipeline
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Main Annotated Academic Datasets

Semantic3D:
outdoor, fixed LiDAR,
4× 109 points

S3DIS: indoor, fixed
LiDAR, 6× 108 points

vKITTI: embarked,
virtual LiDAR,
2× 108 points.

GRSS: aerial LiDAR,
∼ 107 points.
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In practice

Which one is the best? Depends on your problem.

- PointCNN works very well for smaller clouds

- SPG for large problems with a global structure

- New contenders weekly: PointSIFT, etc...

Which algorithm to chose in practice:

- Start with a simple PointNet + sliding window baseline

- Move on to PointCNN/PointSIFT if precision is an issue

- Move on to SPG for scaling/global structure.

Pay attention near big conferences (CVPR, ICCV), new models released constantly.
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Future of the Field

Efficient auto-encoders for
semi-supervized learning Zhu2016

Real-time analysis for dynamic 3D data
for autonomous driving

Deep learning for other remote sensing
tasks: segmentation, object detection,
surface reconstruction. Groueix2018
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Public resources

Today:

Neural Net Basics

Deep Learning in 2D Remote Sensing

Deep Learning in 3D Remote Sensing

Thanks for you attention!

Comments and questions after the course:
Loic.Landrieu@ign.fr and bertrand.le_saux@onera.fr
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