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a b s t r a c t 

In this work, we describe a new, general, and efficient method for unstructured point cloud labeling. 

As the question of efficiently using deep Convolutional Neural Networks (CNNs) on 3D data is still a 

pending issue, we propose a framework which applies CNNs on multiple 2D image views (or snapshots) 

of the point cloud. The approach consists in three core ideas. (i) We pick many suitable snapshots of the 

point cloud. We generate two types of images: a Red-Green-Blue (RGB) view and a depth composite view 

containing geometric features. (ii) We then perform a pixel-wise labeling of each pair of 2D snapshots 

using fully convolutional networks. Different architectures are tested to achieve a profitable fusion of 

our heterogeneous inputs. (iii) Finally, we perform fast back-projection of the label predictions in the 3D 

space using efficient buffering to label every 3D point. Experiments show that our method is suitable for 

various types of point clouds such as Lidar or photogrammetric data. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The progress of 3D point cloud acquisition techniques and the

emocratization of acquisition devices have enabled the use of 3D

odels from real world in several economic fields such as build-

ng industry, urban planning or heritage conservation. Today’s de-

ices, like laser scanners or photogrammetry tools, allow the pro-

uction of very large and precise point clouds, up to millions of

oints, structured or not. Meanwhile, the last years have seen the

evelopment of algorithms and methodologies in order to reduce

he human intervention for two of the most common processing

asks with point clouds: first, surface reconstruction and abstrac-

ion, and second, object recognition and scene semantic under-

tanding. However, these tasks are still a pending research topic

nd in applied fields, point cloud processing remains at least partly

anual. 

This work address the second issue: we aim at discovering the

emantics of the scene, i.e. classifying the content in the scene.

n [1] , the semantic discovery of a scene is done using grammars

n a 3D reconstructed model, so that the result is very dependent

n the quality of the abstract model. Here, we adopt a different ap-

roach. Similarly to [2–4] , we want to extract semantic information

s soon as possible in the processing pipeline. As a matter of fact,
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nowing segmentation of the scene and the class of each object

llows to direct the reconstruction according to each class: model

r primitive fitting, regularity or symmetry constraints. More pre-

isely, we aim at attributing a class label to each 3D point. In the

mage processing field, the similar task would be pixel wise label-

ng or semantic segmentation. Recent work on the subject focus

n the design of efficient 3D descriptors by taking into account

he neighborhoods of points [5,6] . We propose a different approach

ased on Convolutional Neural Networks (CNNs) and particularly

n segmentation networks [7,8] . These networks reached the state

f the art for image segmentation on different use cases such as

ITTI [9] or aerial images [10] . The originality of our approach is

hat our own features are simple 2D primitives: partial snapshots

f the point-cloud. Then, we can do the labeling in a 2D image

pace ( Fig. 1 ) where the segmentation networks proved to be very

fficient. We show that this SnapNet framework, which extends

ur work presented in [11] , can be applied to various scenes, out-

oor and indoor, and for classes which may highly differ depend-

ng on the application. Moreover, by applying SnapNet to various

ypes of point clouds, coming from laser sensors, photogrammetry

r Red-Green-Blue-Depth (RGB-D) cameras, we show how generic

nd the robust the approach is. 

Organization of the paper. The paper is organized as follows

he Section 2 presents the related work on point cloud seman-

ic labeling. The overview of our 4-step semantic labeling method

an be found in Section 3 . Then the four next sections detail

he main steps of the algorithm: Section 4 explains the pre-

rocessing of the 3D point-cloud required to take the snapshots
antic labeling with 2D deep segmentation networks, Computers 
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Fig. 1. Generation of 2D snapshots for semantic labeling in the image space by tak- 

ing random camera positions in the 3D space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

p

 

o  

n  

c  

o

 

t  

r  

e  

F  

a

 

s  

i  

c  

o  

n  

p  

t  

t  

m

 

w  

a  

i  

O  

s  

c  

t  

d  

O  

e  

i  

i  

i  

m  

p  

f  

o  

p  

d  

t

3

 

v  

b  

o  

p  

c  

s  

o

 

 

 

 

 

 

 

according to the strategy exposed in Section 5 , the semantic la-

beling and data fusion pipeline based on convolutional networks

is exposed in Section 6 and point-cloud labeling is detailed in

Section 7 . Finally, in Section 8 , we evaluate our segmentation

method. 

2. Related work 

Semantic segmentation of point clouds is a well known prob-

lem in computational geometry and computer vision. Starting in

the 1990s, it gained in interest with the spread of acquisition de-

vices and reconstruction techniques [12] . The objective is to iden-

tify the class membership of each 3D point. This problem is par-

tially related to the 2D semantic segmentation, where the objective

is to label each pixel of the image. 

The early stages of semantic labeling for point cloud were

mainly focused on aerial laser acquisition (Lidar). The objective

was to discriminate building and roads from vegetation. A com-

mon approach is to discretize the point cloud on a regular grid

to obtain a 2.5D elevation map authorizing the use of image pro-

cessing algorithms as the image filters in [13] or maximum like-

lihood classification in [14] . Other low level primitives, such as

planes [15] , have also been used for bottom-up classification in-

troduced in [16] or [17] . 

In a more general context, low level shape extraction in point

clouds has also been investigated. The Hough transform, originally

designed for line extraction, was successfully adapted to 3D for

plane extraction in [18,19] proposes a generic RANSAC algorithm

for geometric shape extraction in 3D point clouds. Hybrid shape

extraction were investigated in [4,20] where the surfaces which fit

geometric primitives are replaced with the corresponding abstract

model while voids remain as triangular mesh. 

Many algorithms for extraction of higher level semantic in-

formation were published in the recent years. In urban classi-

fication [2,21] , classifying small objects like cars or street fur-

niture [3] and discriminating between roads and natural terrain

become decisive at the smallest possible scale: point level [2] .

Most of the semantic labeling approaches rely on the same tech-

nique: designing the most discriminating features for the classifi-

cation task. For example, in [22] , the authors designed by hand a

collection of expert features such as normalized height or lumi-

nance. Another approach is to a create generic descriptor space

to represent the points and their neighborhood in order to learn

a supervised classifier. Among these descriptors, the spin im-

ages [23] , the fast point feature histograms [5] or the signature

histograms [6] may be the most popular. With respect to these
Please cite this article as: A. Boulch et al., SnapNet: 3D point cloud sem

& Graphics (2017), https://doi.org/10.1016/j.cag.2017.11.010 
pproaches, we use much more simple features: 2D views of the

oint cloud. 

By using a deep learning framework, it is possible to learn not

nly the classifier but also the feature representation. While deep

eural networks are now commonly used in image processing for

lassification or semantic labeling, there are only a few proposals

n these tasks in 3D. 

First, a family of approaches use a voxelization of the space

o create 3D tensors in order to feed a 3D convolutional neu-

al network (CNN) [24–26] , mainly for object classification. How-

ver, those voxel-based approaches might be memory consuming.

or this purpose, [27] proposed to use local, multiscale 3D tensors

round the actual 3D points. 

Second, point-based methods work directly on unordered point

ets, using architectures with fully-connected and pooling layers

nstead of convolutional layers. Thus, PointNet [28] can output

lasses for the whole 3D shape or perform semantic segmentation

f a 3D scene. Then, PointNet ++ [29] introduced a feed-forward

etwork which performs alternatively hierarchical grouping of

oints and PointNet layers optimization to try to capture local con-

ext. Indeed local configurations are highly important to be able

o model complex scenes, and they are inherently captured by the

ultiple snapshots we take in the scene. 

Third, the multi-view strategy consists in applying neural net-

orks to 2D tensors which are selected views of the scene. For ex-

mple, in [30] , a deep framework is used to compute a metric for

dentifying architectural style distance between to building models.

n a shape retrieval task, the multi-view approach of [31] takes

everal pictures of the 3D meshed object and then perform image

lassification using a deep network. The PANORAMA representa-

ion [32] introduces another trick: projections on bounding cylin-

ers oriented following the 3 principal directions of the volume.

ur approach has common features with these last works: we gen-

rate snapshots of the 3D scene in order to use a 2D CNN with

mages as input. But unlike [31] whose purpose is classification,

.e. giving a single label per 3D shape, we compute dense label-

ng in the images and back project the result of the semantic seg-

entation to the original point cloud, which results in dense 3D

oint labeling. Another conceptually different point is the strategy

or choosing views. We do not aim to capture the whole scene (or

bject) in a few carefully selected views, but rather take lots of

artial views and rely on the final vote to put together local pre-

ictions. This avoids introducing too much dataset-related bias into

he algorithm. 

. Method overview 

The core idea of our approach consists in transferring to 3D the

ery impressive results of 2D deep segmentation networks. It is

ased on the generation of 2D views of the 3D scene, as is some-

ne was taking snapshots of the scene to sample it. The labeling

ipeline is presented on Fig. 2 . It is composed of four main pro-

essing steps: point-cloud preparation, snapshot generation, image

emantic labeling and back projection of the segmentation to the

riginal 3D space. 

1. The preprocessing step aims at decimating the point cloud,

computing point features (like normals or local noise) and

generating a mesh. 

2. Snapshot generation: from the mesh and the point attributes,

we generate two types of views, Red-Green-Blue (RGB) and

depth composite, by picking various camera positions (cf.

Section 5 ). 

3. Semantic labeling gives a label to each pair of corresponding

pixels from the two input images. We use deep segmenta-
antic labeling with 2D deep segmentation networks, Computers 

https://doi.org/10.1016/j.cag.2017.11.010
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Fig. 2. Work-flow of the approach. 

Fig. 3. Point cloud (left) and mesh (right) seen from the same point of view: dense 

representations help understanding the scene. 
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Fig. 4. Meshes for taking synthetic snapshots of the 3D scene. 
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a  

W  

c

tion networks based on SegNet [8] and fusion with residual

correction [10] . 

4. Finally, we project back to 3D the semantized images. For

each point of the mesh, we select its label by looking at the

images where it is visible (cf. Section 7 ). 

oint cloud properties. In this work we assume our point clouds

ave a metric scale such that voxelization outputs have the same

oint density. We also consider as known the vertical direction

o compute the normal deviation to this vector. As presented in

ection 8 , it is also possible to use the pipeline without RGB infor-

ation but performances are downgraded. 

. Point cloud preprocessing 

The main issue for image generation when dealing with point

louds is the sparsity. Indeed, let us assume the point density is

niform in the point cloud. When taking a snapshot, the objects

n the foreground are poorly sampled and allow to see the back-

round through them. This leads to images which are difficult to

nderstand, even for a trained human expert. To overcome this is-

ue, we generate a basic mesh of the scene which yields in better-

ooking images, as shown in Fig. 3 . We now detail the algorithmic

teps. 

oint cloud decimation. Point clouds, especially those captured

ith ground lasers, have varying point densities depending on the

istance to the sensor. So, we first decimate the point cloud and

et a lighter cloud so that subsequent processing can be applied

n tractable times. To do that, we voxelize the scene, and keep

he closest point to each voxel center (along with its class label

t training time). In this paper, we chose a voxel size of 0.1m.

t proved to produce relatively small point clouds while preserv-

ng most of the original features and shapes. Stronger decimations

ay lead to discarding small objects. In our experiments with se-

antic 3D, we reduce point cloud sizes from 20 M / 429 M points to

 . 4 M / 2 . 3 M points. 
Please cite this article as: A. Boulch et al., SnapNet: 3D point cloud sem

& Graphics (2017), https://doi.org/10.1016/j.cag.2017.11.010 
esh generation. The only a priori knowledge we have about our

oint-clouds is that they have homogeneous density due to deci-

ation. For practical purposes,we chose the mesh generation algo-

ithm from [33] among many standard methods. Although it does

ot give any guarantee about the topology of the generated mesh,

t is not a concern for our snapshot application. It requires as in-

ut a point-cloud with normals, which we estimate by using the

vailable code from [34] . We now denote the mesh by M = (V, F )

ith V the set of vertices and F the faces. 

omposite colors. We aim at using both color and volume informa-

ion for semantic labeling. To achieve that, we create two textures

or the mesh (cf. Fig. 4 ). The more straightforward is the RGB tex-

ure, which takes the original point colors (cf. Fig. 4 a). Then, we

xtract two generic features of point clouds: normal deviation to

ertical and a noise estimation at a given scale. The normal devia-

ion to the vertical at point p is 

ormdev p = arccos (| n p . v | ) 
here n p is the normal vector and v is the vertical vector. The

oise at a given point p is an estimation of the spread of the points

n its neighborhood. 

oise p = 

λ2 

λ0 

here λ0 (resp. λ2 ) is the highest singular value (resp. the low-

st) obtained doing a principal component analysis estimation by

ingular value decomposition. Our depth composite texture encodes

he normal deviation on the green channel and the local noise on

he red one. The blue channel remains empty at this point, but

ater will be filled with depth (i.e. distance to the camera). 

. View generation 

Once the meshes are constructed, we want to produce the im-

ges for semantic labeling. We used an approach similar to [31] .

e load the model in a 3D mesh viewer and generate random

amera positions and orientations to take various snapshots. 
antic labeling with 2D deep segmentation networks, Computers 

https://doi.org/10.1016/j.cag.2017.11.010
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Fig. 5. The various products of the preprocessing and view generation step. 
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The camera parameters are generated according to two differ-

ent strategies. First, in the random strategy, the camera center co-

ordinates are randomly picked in the bounding box of the scene,

with an altitude between 10 and 30 m. The view direction is

picked in a 45 ° cone oriented to the ground. To ensure the pro-

duction of meaningful pictures, i.e. that the camera looks at the

scene, we impose 20% of the pixels should correspond to actual

points. Second, in the multiscale strategy, we pick a point of the

scene, pick a line which goes through the point, and generate three

camera positions on this line, oriented towards the point: thus en-

suring each camera looks at the scene at various, increasing scale

(allowing more and more details to be seen). 

For each camera position, we generate three 224 × 224-pixel

images, as shown on Fig. 5 . The first one is a snapshot of the

RGB mesh ( Fig. 5 a) and reflects the real texture of the model. The

second one is the depth composite image ( Fig. 5 b), made of sur-

face normal orientation and noise completed with the depth to

the camera. In order to do the back projection efficiently, we also

generate an image where the color of each face of F is unique so

that we know which face is visible ( Fig. 5 c). Finally for training or

validation purposes, when ground truth is available, we create the

corresponding label image ( Fig. 5 d). 

6. Semantic labeling 

CNNs are feed-forward neural networks which make the ex-

plicit assumption that inputs are spatially organized. They are

comprised of learnable convolution kernels stacked with non lin-

ear activations, e.g. ReLU ( max (0, x )). Those filters perform feature

extraction in order to build an internal abstract representation of

the input, optimized for later classification. 

Several deep convolutional neural networks architectures exist

for semantic labeling, usually derived from the Fully Convolutional

Networks [7] . Those models usually take RGB images in input and

infer structured dense predictions by assigning a semantic class to

every pixel of the image. In this paper, we use custom implementa-
Please cite this article as: A. Boulch et al., SnapNet: 3D point cloud sem

& Graphics (2017), https://doi.org/10.1016/j.cag.2017.11.010 
ions of two network variants with a symmetrical encoder-decoder

tructure: SegNet and U-Net. 

• SegNet [8] is illustrated in Fig. 6 a. The encoder part of Seg-

Net is based on VGG-16 [35] , a deep CNN with 16 layers de-

signed for image classification. Only the convolutional part

is kept, while the fully connected layers are dropped. The

decoder performs upsampling using the unpooling operation.

During unpooling, the feature maps in the decoder are up-

sampled by placing the values into the positions given by

the indices of the maximum during the symmetrical pooling

in the encoder. 
• U-Net [36] is shown in Fig. 6 b. Also based on VGG-16 for the

encoder part, it uses a different trick for upsampling. It con-

catenates the feature maps of the decoder convolutional lay-

ers upsampled by duplication with the symmetrical feature

maps in the encoder. Later convolutions blend both types of

information. 

As we extract both RGB and depth composite information from

he dataset, we want to fuse the data sources to improve the ac-

uracy of the model, compared to only one source. We use sev-

ral fusion strategies in order to exploit the complementarity of

he depth and RGB information. Therefore, two parallel 3-channels

egmentation networks are trained, one on the RGB data, the other

n the composite data. The experimented strategies are the follow-

ng: 

• Activation addition fusion, i.e. averaging of the two models

( Fig. 6 c). The predictions of the two SegNet are simply aver-

aged pixel-wise. 
• Prediction fusion using residual correction [10] ( Fig. 6 e). A

very short (3 layers) residual network [37] is added at the

end of the two SegNet. It takes in input the before last fea-

ture maps and learns a corrective term to apply to the aver-

aged prediction. 

Moreover, we also experiment early data fusion using a pre-

rocessing CNN that projects the two data sources into a 3-channel

ommon representation ( Fig. 6 d). We then use this projection as

nput of the traditional SegNet. 

Compared to model averaging, using a neural network to learn

ow to fuse the two predictions should achieve better results, as it

ill be able to learn when to trust the individual sources based

n the context and the classes predicted. As an example, Fig. 7

resents a case of interest for fusion. The RGB prediction is wrong

n the road. The network is fooled by the texture similar to the

uilding one. On the other hand, the depth composite predicts the

ood label on the road but fails on the natural terrain where the

teep slope has the geometric attributes of a building roof. 

. 3D back projection 

This section presents how we project the pixel wise class scores

btained in Section 6 on the original point cloud. 

Projection to mesh. First we estimate the labels at each vertex

f the mesh used to generated the images. Thanks to the unique-

olor-per-face images created at snapshot generation, we are able

o quickly determine which faces are seen in each image pair and

onsequently the visible vertices of V . The score vector of the pixel

s then added to the scores of each vertex of the face. This opera-

ion is iterated over all the images. Finally the vertex label is the

lass with the highest score. 

Projection to the original point cloud. The second step is to

roject the labeled vertices to the original point cloud P . We adopt

 simple strategy. The label of a given point p ∈ P is the label of

ts nearest neighbor with label in V . For efficient computation, we
antic labeling with 2D deep segmentation networks, Computers 

https://doi.org/10.1016/j.cag.2017.11.010
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Fig. 6. Various segmentation networks used in this paper: single-flow networks (a,b) vs. fusion networks (c,d,e). 

Fig. 7. Mono input estimates: RGB (left) and composite (right). 
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Fig. 8. Same prediction view for the different fusion strategies. 
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uild a k-d tree with V , and search for nearest neighbors. This al-

ows not to load the whole P, and avoid extensive memory al-

ocation (particularly when dealing with hundreds of millions of

oints). 

. Experiments 

In this section, we present the results of our experiments on

emantic labeling of 3D point sets. In order to analyze and as-

ess the genericity of our SnapNet approach, we used point clouds

f various origins: Lidar sensors in Section 8.1 , multiple 2D views

nd photogrammetry in Section 8.2 , and low-cost RGB-D cam-

ras in Section 8.3 . We mainly experiment on the Semantic 3D

ataset [40] ( http://semantic3d.net ). 

.1. Laser point clouds 

The Semantic 3D dataset is composed of 30 laser acquisitions

15 for training and 15 for testing in the full semantic-8 set-up)

n 10 different scenes from various places and landscape types

rural, suburban, urban). A variant for computationally demand-

ng algorithms, reduced-8 , is also proposed: it contains the same

5 acquisitions for training but only 4 for testing. In both variants,

he ground truth is available for the training set, and undisclosed

or the test. There are 8 classes, namely: man-made terrain (gray),

atural terrain (green), high vegetation (dark green), low vegeta-

ion (yellow), buildings (red), hardscape (purple) scanning artefacts

cyan), cars (pink). 

For quantitative evaluation, we use the same metrics as the

ataset benchmark. It includes the overall accuracy (OA): OA = 

T 
|P| 
Please cite this article as: A. Boulch et al., SnapNet: 3D point cloud sem

& Graphics (2017), https://doi.org/10.1016/j.cag.2017.11.010 
here |P| is the size of the point cloud, and T is the number

f true positive i.e. the number of points that received the good

abel. We also use the intersection over union (IoU) per class:

oU c = 

T c |P c ∪ P c | where T c is the number of points of class c correctly

stimated, P c is the set of points with true label c and P c is the

et of points with estimated class c . Finally the global average IoU

AIoU) is defined as: I oU = 

1 
| C| 

∑ 

c∈ C I oU c . 

.1.1. Architecture and parameter choice 

Dataset and training. In these experiments, we defined our own

ustom validation set by splitting the training set: 9 acquisitions

or training and 6 for validation. For each training acquisition, we

enerated 400 image pairs, so that we optimize the deep networks
antic labeling with 2D deep segmentation networks, Computers 
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(a) Percentage of visible points function
of snap number (Semantic3D Bildstein station 1).

(b) Overall accuracy and average IoU function
of the snap number (Semantic3D custom set)

Fig. 9. Influence of the number of snapshots. 
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with 3600 samples. We used a stochastic gradient descent with

momentum (momentum is set to 0.9). The learning rate varies ac-

cording to a step down policy starting at 0.01. It is multiplied by

0.2 every 30 epoch. The encoder part of SegNet is initialized with

the VGG16 weights [35] . 

At testing, we generate 500 views at 3 scales. For a point-cloud

of 30 M points, the computation times are the following (with:

CPU Xeon 3.5 GHz, GPU TitanX Maxwell): pre-processing 25 min.

(7 min. with normal estimation by regression); view-generation

7 min.; inference 1 min.; back-projection 8 min.; which sum up to

41 or 23 min. for the whole point-cloud semantization. Most sen-

sitive parameters are the number of voxels (for point-cloud deci-

mation) and the number of snapshots. 

Fusion strategy choice. As explained in Section 6 , the different

natures of the input images impose to define a fusion strategy.

We quantitatively evaluate the different fusion options presented

on Fig. 6 . As a baseline, in the first result block, we trained two

mono-input SegNets, taking as input the RGB or depth composite

images. 

View influence. The number of generated snapshots is a crucial

parameter of the algorithm. Intuitively, the more generated views

there are, the more accurate the prediction is. As shown on Fig. 9 ,

it is verified. Fig. 9 (a) shows the percentage of points seen depend-

ing on the number of generated snapshots for a given scene, which

reaches a plateau. Fig. 9 (b) presents the increase of accuracy and

average IoU on our custom validation set with respect to the num-

ber of snapshots used for test. Base on our experiments, we chose

to generate 500 views which correspond to an operating point in

the curve saturation area. 

8.1.2. Results and analysis 

The mono-input and fusion results are presented on Table 1 a. 

The composite network performs globally better except on

buildings for which there is a great difference of texture compared

to the rest of the scene. Moreover, depth composite images, that

only contain geometric information, are not sensible to the texture

of objects, so almost every vertical plane will be labeled as a build-

ing. This experiment shows that the two inputs are complementary

and that the RGB network is not able to extrapolate the composite

information only from the image texture. 
Please cite this article as: A. Boulch et al., SnapNet: 3D point cloud sem

& Graphics (2017), https://doi.org/10.1016/j.cag.2017.11.010 
The second block of Table 1 a is dedicated to fusion strategies.

ue to the high distribution difference in the prediction maps,

omposite-only totally overcomes the RGB prediction, i.e. the depth

omposite is most of the time confident while the RGB is more

esitating. As a result, the addition of prediction scores does not

mprove the results compared to depth composite only. A visual

limpse of the phenomenon is presented on Fig. 8 c and 8 d, the

wo images are almost similar. 

Operating the fusion before labeling via SegNet should over-

ome this issue by melting the two signals at an early stage. As

xpected the results are visually improved ( Fig. 8 ), particularly on

atural terrain class, where the association of the texture and ge-

metric features is discriminatory. However, the fusion step before

egNet is not optimal. VGG-16 takes a 3-channel image as input,

nd the two convolutions added before SegNet operates a dimen-

ion reduction that may cause information loss. Moreover, the dif-

erent nature of the input makes it uncertain that information from

oth are compatible for fusion this early in the process. Finally the

est results are obtained by the residual correction network. The

ompromise between the fusion after Segnet (addition) and a more

efined fusion using convolution (previous case) is successful. The

esidual correction compensates the difference of the two outputs,

esulting in an increase of the performances on almost all classes. 

For comparison with existing methods we confront our ap-

roach to public results on either the full semantic-8 or the

educed-8 datasets. We present the results for semantic-8 in

able 1 b. The three other methods are the publicly available re-

ults. [38] is method for aerial images based segmentation on im-

ges descriptors and an energy minimization on a conditional ran-

om field. In [2] , the authors use a random forest classifier trained

n multi-scale 3D features taking into account both surface and

ontext properties. Harris Net is briefly described as a Deep 3D

onvolutional Network on the result board. Elaborating upon its

ame, we assume it might be a method based on 3D Harris point

xtraction followed by a classification using a deep framework. We

resent the results of two methods, SegNet with a purely random

et of images, and a U-Net with zoom on snapshot strategy. To our

nowledge the two networks performs equally and the main differ-

nce reside in the snapshot strategy. At redaction time, our U-Net

ook the first place in the leaderboard for global scores, average

oU and overall accuracy. Looking at the per class IoU, we take the
antic labeling with 2D deep segmentation networks, Computers 
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Table 1 

Quantitative results on Semantic 3D. 

Method RGB Depth AIoU OA IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU7 IoU8 

SegNet RGB � 0.28 0.749 0.853 0.097 0.483 0.075 0.69 0.042 0.0 0.0 

SegNet Depth Comp. � 0.326 0.763 0.902 0.342 0.597 0.013 0.503 0.178 0.066 0.003 

SegNet add. � � 0.312 0.762 0.895 0.237 0.573 0.029 0.522 0.172 0.067 0.003 

SegNet before � � 0.336 0.763 0.898 0.569 0.452 0.021 0.510 0.179 0.051 0.009 

SegNet Res. � � 0.427 0.805 0.948 0.739 0.763 0.024 0.710 0.133 0.097 0.0 

(a) Comparison of deep segmentation networks (single-input or various fusion schemes) on Semantic 3D, custom validation set. 

Method AIoU OA IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU7 IoU8 

Graphical models [38] 0.391 0.745 0.804 0.661 0.423 0.412 0.647 0.124 0.0 0 0 0.058 

Random forest [2] 0.494 0.850 0.911 0.695 0.328 0.216 0.876 0.259 0.113 0.553 

Harris Net 0.623 0.881 0.818 0.737 0.742 0.625 0.927 0.283 0.178 0.671 

SnapNet (SegNet / random) (ours) 0.516 0.884 0.894 0.811 0.590 0.441 0.853 0.303 0.190 0.050 

SnapNet (U-Net / multiscale) (ours) 0.674 0.910 0.896 0.795 0.748 0.561 0.909 0.365 0.343 0.772 

(b) Semantic 3D results on full test set ( semantic-8 ). 

Method AIoU OA IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU7 IoU8 

Graphical models [38] 0.384 0.740 0.726 0.730 0.485 0.224 0.707 0.050 0.0 0 0 0.150 

Random forest [2] 0.542 0.862 0.898 0.745 0.537 0.268 0.888 0.189 0.364 0.447 

DeePr3SS [39] 0.585 0.889 0.856 0.832 0.742 0.324 0.897 0.185 0.251 0.592 

DeepNet [27] 0.437 0.772 0.838 0.385 0.548 0.085 0.841 0.151 0.223 0.423 

SnapNet (U-Net / multiscale) (ours) 0.591 0.886 0.820 0.773 0.797 0.229 0.911 0.184 0.373 0.644 

(c) Semantic 3D results on reduced test set ( reduced-8 ). 

IoU: intersection over union (per class), AIoU: average intersection over union, OA: overall accuracy. Classes 1: man-made terrain, 2: 

natural terrain, 3: high vegetation, 4: low vegetation, 5: buildings, 6: hardscape, 7: scanning artefacts, 8: cars. 
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ead on six out of eight categories. Among them, the performances

n natural terrain, scanning artifacts and cars are drastically in-

reased. On man-made terrain and buildings, we place second with

 comparable score as [2] and Harris Net. The use of the zoom

trategy greatly improves the score on cars and scanning artifacts.

he reason is that compared to the random strategy, the training

ataset (and the test dataset) contains more images with small de-

ails, which makes them possible to segment. The only relative fail-

re of the deep segmentation networks are the scanning artifacts

nd the hardscape classes. Even though we place first on these cat-

gories, the IoU score is low: we discuss this in Section 8.4 . 

We also present the results for reduced-8 in Table 1 . While

38] and [2] are still present, different deep learning approaches

re proposed for comparison. DeePr3SS [39] is also a multi-view

pproach, very similar to ours but later, with multi-stream fully

onvolutional networks for 2D classification of virtual views ren-

ered by Gaussian point splattering. DeepNet [27] is a voxel-based

pproach with 3D convolutional networks applied to multiscale

eighborhoods of each scan point. SnapNet obtains the best aver-

ge IoU (59.1%), and is close second in Overall Accuracy (88.6%). It

ets 4 out of 8 best per-class accuracies (including buildings, cars

nd trees). DeePr3SS is the main competitor with the best OA and

 out of 8 best per-class accuracies, which shows the primacy of

ulti-view approaches on this dataset. The reduced-8 data raise

nteresting problems. First the 4 test point clouds have been deci-

ated and so are sparser than the previous experiment. Since we

h  

Fig. 10. Semantic labeling of 

Please cite this article as: A. Boulch et al., SnapNet: 3D point cloud sem

& Graphics (2017), https://doi.org/10.1016/j.cag.2017.11.010 
sed he same parameters for meshing as on the denser, original

ata, some rendering artifacts may occur. The good performances

how that parameter choice is somewhat robust to various 3D res-

lutions. Second, the 4 selected scenes are the ones with the more

ariety between them and also with respect to the training set:

ifferent types of buildings, quite rare natural terrain (e.g. cliffs).

gain, this may explain slightly inferior results than on semantic-

 , but performances are still good enough to prove the adaptation

apacity of the classifiers. 

.2. Photogrammetric point clouds 

In order to evaluate the capacity of our method to be

ransferable, we also experiment on photogrammetric data. The

igs. 10 and 11 a present a reconstruction of Mirabello’s church de-

troyed after an earthquake in 2012 in Italy. Original images were

aken from a drone flying over the town center and then used

o extract key-points which were mapped to 3D. We use these

ata for two experiments: direct transfer of the network trained

n semantic-8 to photogrammetry and fine-tuning for labeling us-

ng new classes. We preprocess the data in a similar way as for

aser data. 

First, the network used for semantic labeling is the one trained

n the full semantic-8 training set. Fig. 10 presents the visual re-

ults. Most of the visual error concentrates on ground classes and

igh vegetation. A lot of ground is covered by rubble coming from
photogrammetric data. 
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Fig. 11. Finetuning for destroyed building detection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Meshing process for structured RGB-D data. 
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the destroyed building. Due to the chaotic structure of the debris,

it is recognized as natural terrain. Part of the rooftops are also

wrongly labeled the same way. We interpret this as a consequence

of the fact that our training set contains only ground laser acquisi-

tions so only sloping roofs are present at training time. When con-

fronted to roofs with small inclination, the network is misled to

a ground class. Finally, high vegetation labels appear on destroyed

parts which are still standing. This is mainly due to the high noise

estimation (red channel of the depth composite image) which is

incompatible with the building class. 

Second, we annotated the point cloud using two classes: rub-

ble or non rubble ; and split it as training and testing set. The

Fig. 11 shows the two sets (training in green) and test in blue. Rub-

ble is represented in bright color, while non-rubble is lighter. We

fine tune the RGB and composite networks trained on semantic-

8 where we replaced the last classification layer (8 classes) by a

new one (2 classes). As the input sizes of the original fusion mod-

ule do not corresponds anymore, we train from scratch a new fu-

sion module. The results are presented on Fig. 11 . The bright green

points are the detected rubble and match the destroyed church

walls and the surrounding wreckage. No false positives appear far

from the damaged area. Interestingly, this class is quite complex,

with vertical but also chaotic elements, and of the same color as

most intact buildings. These results show that transfer learning

was possible even in this difficult case. 

8.3. RGB-D camera point clouds 

Finally, we tested our approach on point clouds cap-

tured by low-cost RGB-D cameras. We use the SUN RGB-D

dataset [41] made of previous smaller RGB-D datasets [42–44] . It

contains more than 10 k images from 4 various RGB-D sensors,

completed with several types of 2D and 3D annotations over the

whole dataset. We focus on the semantic segmentation task of the

SUN RGB-D dataset, using the 13 classes defined in [45] . 

Architecture and parameter choice 

Pre-processing. In the previous cases, we made the implicit as-

sumption that point clouds where unstructured. Actually, with

RGB-D data, the original point cloud is noisy and incomplete. If

we apply the same decimation and meshing process, the result-

ing point cloud would be so downgraded that classification would

be impossible. Preferably, we chose to exploit the data structure

inherent to Kinect-like acquisitions. First, we apply an enhance-

ment procedure in the image space: inpainting, using [46] , to fill

the missing parts of the acquisition, and denoising from [47] . The

resulting point cloud is smoother and more consistent. 

The meshing process is presented on Fig. 12 . A dense mesh is

computed in the image space where each vertex corresponds to
Please cite this article as: A. Boulch et al., SnapNet: 3D point cloud sem

& Graphics (2017), https://doi.org/10.1016/j.cag.2017.11.010 
 pixel. At this stage the objects at different depths are not sepa-

ated, so we then remove the elongated faces. For this purpose, we

iscard triangles with an aspect ratio ( AR ) greater than 10: 

R = 

a b c 

8 (s − a ) (s − b) (s − c) 
where s = 

a + b + c 

2 

(1)

View generation. The small field of view of the RGB-D sen-

ors produces very partial and oriented scenes. But there are lots

f them due to the easy acquisition process. So for the sake of

omputational feasibility, we restrain the number of snapshots per

cene (or RGB-D pair). In the meantime, we use the a priori about

he sensor orientation to select better virtual views than ran-

omly. We choose a deterministic strategy, illustrated on Fig. 13

hat insures views are different enough while minimizing irrele-

ant views. We set a virtual rotation point at 6 m from the origin

camera center of the original sensor). Then we generate views at

 and 8 m from the virtual point. We place the camera in front,

0 deg on the left and on the right and reproduce the process for

hree elevation angle values ( 0 deg , 15 deg and 30 deg ), for a total of

8 views per scene. 

Training. In order to face the class imbalance problem of

UN RGBD dataset we had to weight each class participation over

he loss function as in [48] . 

Post-processing. Due to discarded mesh triangles and re-

rojection artifact we had to fill prediction map holes by nearest

eighbor propagation. 
antic labeling with 2D deep segmentation networks, Computers 
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Table 2 

Semantic segmentation results for 13 classes SUNRGBD. Results with methods used for comparison were retrieved from [45] . 

methods Bed 

(%) 

Books 

(%) 

Ceiling 

(%) 

Chair 

(%) 

Floor 

(%) 

Furniture 

(%) 

Objects 

(%) 

Picture 

(%) 

Sofa 

(%) 

Table 

(%) 

TV 

(%) 

Wall 

(%) 

Window mean 

SnapNet (our) 86.7 48.3 77.3 74.7 81.4 64.0 42.8 72.3 62.7 83.7 49.8 79.2 52.9% 67.4% 

SceneNet-DHA 33.2 2.5 40.6 54.0 71.1 26.2 22.1 9.5 15.0 29.2 0.0 89.2 0.0% 30.2% 

SceneNet-DO-DHA 46.1 5.2 43.6 54.8 63.1 37.4 23.2 10.7 12.2 29.8 0.0 83.6 1.0% 31.6% 

SUNRGBD-DHA 70.4 11.2 64.7 69.2 94.0 48.4 35.3 13.7 48.2 63.0 3.5 89.7 27.9% 49.2% 

SUNRGBD-DO-DHA 73.6 16.6 71.6 70.1 93.5 47.9 38.7 17.2 58.5 61.8 6.8 88.7 33.9% 52.2% 

SceneNet-FT-SUNRGBD-DHA 69.0 20.0 70.3 70.7 93.7 49.7 35.5 15.7 57.8 65.9 14.1 89.0 33.8% 52.7% 

SceneNet-FT-SUNRGBD-DO-DHA 75.6 13.5 69.2 73.6 93.8 52.0 37.1 16.8 57.2 62.7 9.5 88.8 36.5% 52.8% 

Best values are emphasized in bold, second best values in italics. 

Fig. 13. View generation strategy for RGB-D data. 

Fig. 14. 3D rendering of Sun RGB-D test scenes. From left to right, original RGB 

image, point clouds with RGB colors, ground truth and predicted labels respectively, 

and segmented image. (White is not labeled, green is floor, beige is wall, orange is 

chairs, brown for sofas, yellow for bed, blue for table, light blue for furniture.) (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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.3.1. Results and analysis 

Table 2 shows per class accuracy rates for the 13-class

egmentation task on SUNRGBD along state-of-the-art results

rom [45] proposing the DHA encoding for depth map (Depth-

eight-Angle). Our method leads to a 14.6 points improvement on

he mean accuracy. This demonstrates the capacity of our method

o adapt itself to various kind of 3D data. In particular, our method

anks first for 11 furnitures or objects such as chairs, tables or

eds. For the “wall” and “floor” classes however, [45] ’s method per-

orm better, though it might be a consequence of over-fitting. In-

eed, these classes are more present in the dataset than other and

an mislead the training. Fig. 14 shows that 3D analysis is rele-

ant for our own understanding. Even with incomplete data, a 3D

endering allows to distinguish better planes and separated objects
Please cite this article as: A. Boulch et al., SnapNet: 3D point cloud sem

& Graphics (2017), https://doi.org/10.1016/j.cag.2017.11.010 
han the 2D image (even completed by a depth map). Thus, intri-

ated objects are better distinguished in the 3D point cloud, which

ields in better 2D segmentation maps. 

.4. Limitations and perspectives 

Even though the proposed approach obtains the best perfor-

ances on the semantic-8 leader board there are still issues to

vercome. First, a non-exhaustive training set influences the re-

ults: for example missing architectural elements or samples may

xplain the relatively low scores on hardscape and scanning arti-

acts. For a more generic pipeline, one should use a more diver-

ified training set. A second field of future investigation is post-

rocessing the results to remove the outliers by regularization. For

xample, we could enforce the volumetric consistency of labels in

 neighborhood or impose constraints on points belonging to a

ommon extracted shape. Concerning the segmentation task over

UN RGBD dataset, our approach presents very good quantitative

esults in spite of a very different spatial structure of the data. This

hows its genericity and robustness to sparsity and noise. Finally,

 promising line of investigation is to perform data augmentation

y using data from other sources. For example, synthetically gener-

ted images could be added in the training set, or scenes could be

ugmented with 3D models of small objects like cars. In addition

o modifying the proportion of given classes, it increases the vari-

bility of the scenes (more configurations) and consequently avoids

ver-fitting which leads to a more generic framework. 

. Conclusion 

We have presented an new and efficient framework for se-

antic labeling of 3D point clouds using deep segmentation neu-

al networks. We first generate RGB and geometric composite im-

ges of the scene. These pairs are the inputs of our network ar-

hitectures for semantic segmentation. Several strategies for data

usion were investigated, and among them segmentation network

ith residual correction proved to perform the best. Finally, image

egmentation were aggregated on the 3D model to give to each

oint a label. We experimented on both laser scans, photogram-

etric reconstructions and RGB-D data. The method was evaluated

gainst the semantic 3D reduced and full datasets and obtained the

est performances in the leader board concerning the global mea-

urements and several individual classes. We also got encouraging

esults of transferring networks trained on laser acquisition to pho-

ogrammetric data. Finally, for single view RGB-D data, we also es-

ablish state-of-the-art performances on the segmentation task of

he SUNRGBD (13 classes) dataset. Although we obtain good per-

ormances, several fields of investigation remain such as data aug-

entation or images generation strategies to improve the scores

n small and rare classes. 
antic labeling with 2D deep segmentation networks, Computers 
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Implementation details 

The manipulation of point clouds, i.e the preprocessing, the

image creation and the back projection was implemented using

Python and C ++ ; with PCL and the 3D viewer of http://www.

pyqtgraph.org . The neural networks were implemented using Ten-

sorflow and PyTorch. 
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