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ABSTRACT:

This paper presents an interactive approach for multi-class segmentation of aerial images. Precisely, it is based on a deep neural
network which exploits both RGB images and annotations. Starting from an initial output based on the image only, our network then
interactively refines this segmentation map using a concatenation of the image and user annotations. Importantly, user annotations
modify the inputs of the network - not its weights - enabling a fast and smooth process. Through experiments on two public aerial
datasets, we show that user annotations are extremely rewarding: each click corrects roughly 5000 pixels. We analyze the impact of
different aspects of our framework such as the representation of the annotations, the volume of training data or the network architecture.
Code is available at this address1.

1. INTRODUCTION

Computer vision has seen tremendous progress in the last few
years thanks to the emergence of powerful deep learning al-
gorithms. This results in almost mature algorithms which are
now used in industry. However, the devil is in the details and
it is often not possible to reach the precision expected by indus-
trial end-users. To fully automate computer vision tasks, a human
supervision is still often necessary to assert the quality of the res-
ults. We focus in this paper on semantic segmentation of aerial
images. This task consists in image classification at the pixel level
and is useful in remote sensing and Earth observation to mon-
itor man-made architectures or natural phenomena. Using deep
learning tools, it has been first addressed with fully convolutional
networks in (Long et al., 2015) and is now efficiently tackled
with powerful convolutional neural networks (CNNs) such as
Deeplabv3+ (Chen et al., 2018). Under appropriate conditions
(e.g. when a large enough training dataset is available), one might
say that semantic segmentation is nearly achieved. Indeed, these
segmentation algorithms lack only a few percents of precision
to reach perfect scores on public benchmarks. However, these
few percents can visually make a big difference and therefore not
be tolerable in practice. Besides, it often gets worse in real-life
datasets due to a variety of factors (complex data, lack of well-
annotated ground-truth, various usage domains, ...). This paper
proposes a fast procedure to iteratively refine the segmentation
maps with a human in the loop. It consists in a neural network
pre-trained with simulated human annotations and which does not
require any retraining during the interactive process.

In order to concretely motivate our approach, let us consider two
famous aerial image datasets in remote sensing. On the INRIA
Aerial Image Labelling Dataset (Maggiori et al., 2017), a building
segmentation dataset, the current best networks reach an Inter-
section over Union (IoU) around 0.8 and a pixel accuracy around
97% on the test set. On the ISPRS Potsdam multi-class segment-
ation dataset (Rottensteiner et al., 2012), the state-of-the-art ap-
proaches almost reach a pixel accuracy of 92% on the test set.
While these performances are incredibly high, there might still
remain some misclassified areas unacceptable for an end-user.
Besides, these optimal results are obtained using top notch neural
networks which have required many specific refinements (Yue et

1https://github.com/delair-ai/DISIR
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Figure 1. Example of the proposed interactive semantic
segmentation approach on the ISPRS Postdam multi-class

dataset (Rottensteiner et al., 2012)

al., 2019). An off-the-shelf neural network still yields good res-
ults but, as the baselines show, a drop of performance between
5 and 10% can be expected. Moreover, these performances de-
crease quickly when the networks are faced to the domain shift
issues inherent to machine learning. Therefore, the segmentation
masks output by these neural networks have to be manually re-
viewed to meet the expectations of a potential end-user.

Let us also consider a practical application for which current ap-
proaches still yield imperfect results. Drones are increasingly
used to monitor different environments like crop fields, rail-
roads or quarries. In this context, semantic segmentation can
be extremely useful for different tasks such as defects detection,
volumes computation or crop monitoring. However, due to the
complexity and the high variety of the acquisitions, results are
usually not as good as on public datasets while a high precision is
necessary for these tasks. Therefore, the operators often have to
manually refine the segmentation maps which is a slow process.

To address these issues, we propose to adopt an interactive se-
mantic segmentation approach, as sketched in Figure 1. Indeed,
a human in the loop can easily spot the misclassified areas and
correct them thanks to a more complex yet intuitive analysis. The
difficulty then is to reach optimal classification while keeping the
whole process swift and engaging enough.

Our present contribution is as follows.

1. We propose an interactive segmentation framework for
aerial images using deep learning. Once the classic train-
ing phase of a neural network is done, our algorithm does
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not need any retraining and can therefore quickly refine the
segmentation maps.

2. Built upon previous computer vision work mostly oriented
toward interactive binary segmentation, our work focuses on
interactive multi-class segmentation

3. We study the relevance of this approach under different
conditions. Exhaustively, we investigate the impact of an-
notation encoding, annotation positioning, training set size
and architecture choice.

The rest of this paper is organized as follows. We first review
the related work in the end of this section, second present our ap-
proach in Section 2., then discuss how to evaluate it in Section 3.
and finally detail our experiments in Section 4..

1.1 Review of related work

Interactive interpretation of remote sensing data has a long
history, partially due to the lack of reference data for training in
that field. Interactivity has been processed by various techniques
to enhance data mining tools with relevance feedback capabil-
ity : Bayesian modeling of sample distributions was at the core
of VisiMine (Aksoy et al., 2004), and Support Vector Machines
(SVMs) were used in (Ferecatu and Boujemaa, 2007). More re-
cently, boosting has been the method of choice due to the possib-
ility to train quickly in an incremental manner (dos Santos et al.,
2013, Le Saux, 2014). Active learning, or in other words looking
for examples which are the more able to lead to a better classi-
fication, has also been used for this purpose (Tuia et al., 2009,
Bruzzone and Persello, 2009). With respect to these works, our
approach apply deep learning for interactive remote sensing.

Interactive segmentation has been tackled in computer vision
with a large variety of methods in the last two decades. Older
ones are usually graph based methods (Boykov and Jolly, 2001,
Rother et al., 2004, Grady, 2006) or based on random forests (Saf-
fari et al., 2009, Santner et al., 2009). More recently, best seg-
mentation performances were obtained with CNN-based archi-
tectures. So, they are favored to provide the initial segmentation.
Several works have then tried to make them interactive to get finer
results. They standardly use points resulting from user clicks as
annotations. We now review thoroughly these methods.

Deep interactive object selection (DIOS) (Xu et al., 2016) is the
first proposal of an interactive segmentation framework based on
neural networks. It aims for binary classification. In a nutshell,
the network takes as input two additional channels concatenated
with the RGB image. The first one contains annotation points
from the foreground while the other one contains background
points. These annotation points are encoded into euclidean dis-
tance maps. The annotations are automatically sampled during
training using the ground-truth maps. We extend this approach
to multi-class segmentation of aerial images. Multiple existing
works are inspired by DIOS. (Liew et al., 2017) adopt a multi-
scale strategy which refines the global prediction by combining it
with local patch-based classification. (Hu et al., 2019) also follow
a multi-scale strategy by designing a two-stream fusion network
to process the annotations differently than the image.A partic-
ular challenge is to get enough useful annotations. For this pur-
pose, (Mahadevan et al., 2018) use a hard-sample mining strategy
at training by selecting annotations among erroneous predic-
tions.Alternatively, (Jang and Kim, 2019) iteratively optimize the
annotation maps given as inputs by back-propagating the errors
between predictions and annotations. Finally, DEXTR (Maninis
et al., 2018) and (Wang et al., 2019b) both ask the user to click

points on the borders and corners of the objects. Recently, (Ben-
enson et al., 2019) assess these various strategies in the first large
scale study of interactive instance segmentation with human an-
notators. Their experiments hint that center annotation clicks are
the most robust and that distance transform to encode the annota-
tion points can be replaced by binary disks.

Polygon-RNN++ (Acuna et al., 2018) is an interesting alternative
to DIOS-like approaches. Using a CNN-RNN architecture, they
predict a polygon which can be refined by moving its vertices.
Using Graph Convolutional Networks (GCN), Curve-GCN (Ling
et al., 2019) extend this work by predicting a spline which bet-
ter outlines curved objects. Note that these aforementioned ap-
proaches aim to binary classification.

Multi-class interactive segmentation has also been approached
in various ways. Several older methods (Nieuwenhuis et al.,
2014, Nieuwenhuis and Cremers, 2012) address this problem us-
ing a bayesian maximum a posteriori (MAP) approach while (Sant-
ner et al., 2010) rely on a random forest classifier. Recently, (An-
driluka et al., 2018) use a combination of two slightly modified
Mask-RCNN (He et al., 2017) to compute multiple fixed seg-
mentation propositions and then let the user choose which of
these propositions should form the final segmentation. Finally,
(Agustsson et al., 2019) are the first to propose a deep learn-
ing approach which lets the user correct the shape of a proposed
multi-class segmentation. Their algorithm takes as input a con-
catenation of the image and the extreme points of each instance
in the scene and then corrects the segmentation proposal using
scribbles. In contrast, we adopt in our work a class-dependant
DIOS-based approach to refine an initial segmentation map.

Automatic evaluation of an interactive system requires some
way of mimicking the human annotation. (Xu et al., 2016) try to
mimick a user who would correct the largest mislabelled regions
by iteratively placing the annotations far from the boundaries of
the mislabelled prediction. In details, they use as annotation the
point which maximises the distance to the boundary of the false
prediction in order to simulate an image analyst. Then, they do
a new prediction using this generated annotation and repeat this
process for 20 iterations. Our automatic clicking strategy is in-
spired from this idea and adapted to our multi-label segmentation
problem. (Benenson et al., 2019) add some noise in the simulated
clicks to better match the human behavior. They also manually
experiment their approach with a large pool of human annotat-
ors. In 3., we investigate different strategies to simulate human
analysts and evaluate automatically an interactive system.

2. PROPOSED ALGORITHM

We now describe in details the proposed approach for interactive
multi-class segmentation of aerial images. In particular, our goal
is to train a neural network with two purposes:

1. producing an initial high quality segmentation map of the
scene without any external help;

2. using annotations provided by an operator to quickly en-
hance its initial prediction.

To achieve this, we propose a neural network which keeps its ori-
ginal structure but takes as input a concatenation of the classic
inputs (e.g. RGB) and of the annotations (N channels, one per
class). These annotations are clicked points. Note that only the
inputs of the network are modified and not its weights: this makes
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Figure 2. High level overview of the proposed approach: information provided by the user modifies the input of the network - not the
network itself - allowing an effective interaction

the swiftness of the approach. Figure 2 presents a high-level over-
view of our approach.

We first define our training strategy and then present our study on
the annotations themselves.

2.1 Training strategy

In the following, we assume that we have a segmentation refer-
ence composed of N classes. Ground-truth maps are the core
of our training strategy. On one hand, they are classically used to
compute and back-propagate the loss. On the other hand, they are
also randomly sparsified to sample annotations. In other words,
only a few pixels from the ground-truth are kept to be used as an-
notations. According to their class, these annotations are encoded
in the N annotation channels given as input to the algorithm. To
train under various annotation layouts, the number of sampled an-
notations is random in each training example. Since the network
has to be able to create an accurate segmentation map without
them, the possibility of a lack of annotations is also sampled.
Concretely, this situation means that the annotation channels are
filled with zeros.

If the annotations are sampled independently of their class, the
following problem may occur. During the evaluation phase, an-
notations on sub-represented classes can be ignored by the net-
work because it has barely seen any annotation points of these
classes during training. Therefore, it has not learned how to use
them to enhance its predictions. To overcome this issue, we use
a frequency balancing strategy to sample the annotations based
on the classes distributions. It allows the network to equally see
annotations from each class during training and, therefore, to be
efficiently guided once the training is done.

2.2 Annotation representation

We investigate two aspects of the annotation representation: how
to position clicks in order to sample the most useful information,
and how to encode clicks to get the best benefit.

Click positioning. Fixing a wrong segmentation implies to
provide the system with additional information about the right
division. New samples provided by clicks may represent either
the inside of an instance or its border.

The first case seems to be the most intuitive. Clicked pixels are
inside instances and the annotation points represent the class as-
sociated to these instances. Contrary to (Xu et al., 2016), we do

Figure 3. Binary (left) and distance transform (right) click.

not sample them at a minimal distance from the boundaries since
we assume that an annotator might click near an edge to fine-tune
the prediction. For the second case where the annotations repres-
ent the borders of the instances, the channel associated to a click
corresponds to a class randomly chosen among the ones adjacent
to the clicked border.

Aiming to ease the burden of the end users, we also explored
softer constraints on the annotations. Indeed, instead of using N
annotation channels, we summarized them into a single annota-
tion channel. For the border strategy, this single channel only
indicates the presence of a border. For the inside point strategy,
it only indicates where the network has initially made a mistake.
To implement this latter strategy, we had to slightly modify the
training process. The network performs a first inference to create
a segmentation map used to find mislabelled regions. Annota-
tions are then sampled in these areas and a second inference is
performed. Only this second inference is used to back-propagate
the gradients. However, as shown in Section 4.4, none of these
simplified annotations seems promising to efficiently guide the
segmentation task.

Click encoding. User clicks can be encoded in various ways,
and such may provide the system with more or less spatial in-
formation, as shown in Figure 3. In particular, we consider:

• Small binary area around the annotation points

• Euclidean distance transform maps around these points

As shown in Section 4., the inside point strategy with distance
transform encoding seems to be our most successful combination.



3. DISCUSSION ON THE EVALUATION STRATEGY

To evaluate interactive approaches, two procedures are possible.
Either the ground-truth is available and can be used to sample
annotations, or it is not and a human operator has to make the
annotations. Therefore, we have evaluated our approach both
manually and automatically. We use the IoU averaged over all
classes as our evaluation metric.

Automatic evaluation For each image, the neural network
makes a first inference without annotations. A click is then auto-
matically generated and the network makes a new inference. This
process is repeated iteratively for a fixed number of clicks.

We have compared two click sampling strategies, both using a
comparison between the prediction and the ground-truth:

1. A click is automatically sampled in one of the biggest mis-
labelled areas. Some randomness is added in the choice of
the area and in the localization of the click inside the area
to better simulate a human behavior. This process is class-
independent.

2. The process is similar to 1. but the generated click has the
supplementary constraint to be on a pixel belonging to a spe-
cified class. This allows to also correct pixels belonging to
sub-represented classes. This process is class-dependent.

As we will see in 4.2, the class-dependent process is better
than the first one to evaluate the influence of the clicks on sub-
represented classes but has two drawbacks: overall smaller erro-
neous areas are corrected which leads to smaller corrections and
there is less room for randomness if the chosen class to annotate
is predetermined.

Manual evaluation This process is similar to the automatic one
but the clicks are now made by a human operator. This operator
also aims to correct the biggest erroneous areas but the localiza-
tion of the clicks is now inherently subjective.

To do this manual evaluation, we have built a QGIS (QGIS De-
velopment Team, 2009) plugin. User interaction is then handled
by the QGIS interface while the heavy computations, e.g. the se-
mantic segmentation, are performed in a separate server that can
be local or remote. Once the server is launched, the data transfer
is transparent to the user.

4. EXPERIMENTS

In this section, we aim to show that our method works and how
to best evaluate it among the two evaluation strategies aforemen-
tioned in Section 3.. Besides, we study the influence of the dif-
ferent parameters described in Section 2.2. Furthermore, we con-
duct two experiments to better apprehend the possibilities and the
limits of our approach:

• We have first compared different backbone architectures to
evaluate if it has a significant impact on the performances.
More importantly, since these different architectures pro-
duce different initial segmentation maps, this comparison
also allows us to study if the initial quality of the segmenta-
tion maps influences the benefits brought by the annotations.

• The second one is motivated by the fact that it often happens
in practice to only have access to a very limited amount of
annotated data. Similar to (Castillo-Navarro et al., 2019)
where the authors study the influence of the training set size
on the network performance, we study the influence of this
parameter on the neural network refinement abilities. To this
end, we have trained the networks on subsets of the initial
training sets.

This section is thus organized as follows. We first present our
experimental setup. Second, we show that our method works and
how to best evaluate it. Then, we analyse the outcomes of our dif-
ferent experiments with automatic evaluation. Finally, we draw
conclusions from the manual evaluations.

4.1 Experimental setup

Datasets. We have tested our approach on the two standard
remote sensing datasets mentionned in the Introduction. We
split the initial training sets into a training and a validation sets
with a 80%-20% ratio and use the validation sets for our experi-
ments. The INRIA Aerial Image Labelling dataset (Maggiori et
al., 2017) is composed of two classes (buildings and not build-
ings) and covers more than 800 km2 with a spatial resolution of
0.3m. The size of each image is 5000 × 5000 pixels. The train-
ing set is composed of 144 images and the validation set of 36
images. The ISPRS Potsdam dataset (Rottensteiner et al., 2012)
is composed of 6 classes (impervious surface, buildings, low ve-
getation, tree, car and clutter). The class car is sub-represented
compared to the other classes. This dataset covers around 3 km2

with a spatial resolution of 0.05m. The size of each image is
6000 × 6000 pixels. The training set is composed of 19 images
and the validation set of 5 images.

Neural Network. Except in the backbone comparison, we use
a LinkNet (Chaurasia and Culurciello, 2017) architecture. It is
a classic encoder/decoder architecture relying on a ResNet en-
coder (He et al., 2016). The networks are trained using stochastic
gradient descent (SGD) and cross-entropy loss for 50 epochs with
a batch of size 8, seeing during each epoch 10000 samples ran-
domly chosen and cropped (size 512 × 512). The initial learn-
ing rate is fixed at 0.05 and is divided by 10 after 15, 30 and 45
epochs. Only basic data augmentation is performed: horizontal
and vertical flips. The implementation is done using Pytorch.

Annotations. During our different evaluations, we sample 120
clicks for each image and measure the IoU gain for each class.
Except when specified otherwise, we encode clicks using dis-
tance transform and assume that they represent the inside of the
corrected instances. The annotations for the Potsdam dataset are
sampled during training based on their class distribution, except
in the frequency balancing influence study.

4.2 Approach assessment and automatic evaluation strategy

Here we compare the two proposed automatic evaluation strategies.
Let us recall that, for the first strategy, the clicks are sampled
iteratively in the biggest erroneous areas independently of the
class while they are sampled equally in each class in the second
one. As we can see on Figure 4, the class independent eval-
uation strategy allows to reach a higher overall IoU but to the
detriment of the sub-represented car class in the Potsdam data-
set. This is due to the fact that the biggest erroneously predicted
areas inherently belong to larger instances than cars such as build-
ings. Therefore, even though the overall metric gain is not as
good as with the class-independent evaluation process, we choose
the class-dependent one for our further evaluations on Potsdam.



Figure 4. Comparison of the two different automatic evaluation
processes on the INRIA (top) and Potsdam (bottom) datasets.

Dataset Corrected pixels
INRIA 3143

Potsdam 7219

Table 1. Average corrected pixels per click

However, the INRIA dataset does not contain a low-represented
class so we choose the class-independent evaluation process to
evaluate our experiments on this dataset.

Whatever the evaluation strategy, the results displayed in Figure 4
validate the efficiency of our approach on both datasets. Indeed,
all segmentation performances are improved for all classes: on
average the mean IoU is increased by 3.7% on the INRIA Build-
ing dataset, and by 4.2% on the muti-class ISPRS Potsdam data-
set. Besides, as we can see on Table 1, each click allows to correct
around 5000 pixels in average.

4.3 Influence of the frequency balancing

Figure 5 compares the improvements between training with fre-
quency balancing to sample the annotations and without. Here,
we use binary-encoded clicks in order to control the number of
samples per class. As we can see, without frequency balancing,
the network does not learn to use car annotations to refine its pre-
dictions. Indeed, the low-representation of this class implies that
only few annotations from it were seen during training. A fre-
quency balancing strategy efficiently tackles this issue. Overall,
mean IoU is increased by almost 1% and 5 classes out of 6 are
improved. However, frequency balancing is not necessary for the
INRIA dataset which does not contain any low-represented class.

4.4 Influence of the annotation strategy

We compare here the different annotation strategies: inside clicks
or border clicks, binary encoding or distance transform, and
single or multiple channels. As we can see on Figure 6, the dis-
tance transform clearly increases the benefits of the annotations
compared to the binary encoding. While (Benenson et al., 2019)
conclude that the binary encoding leads to better performances,
our opposite conclusion might be inherent to the large size and

Figure 5. Study of the impact of the frequency balancing during
training on the Potsdam validation set.

Figure 6. Comparison of the different annotation strategies on
the INRIA (top) and Potsdam (bottom) datasets. 1c means single

annotation channel.

scale of aerial images which dilute the annotations localized over
very small areas.

Both the contours and the inside points are efficiently used by the
network to enhance its predictions but it is still noticeably bet-
ter with the inside points. We can also notice that the last 20
added points considerably boost the performances of the inside
point strategies for the Potsdam dataset: this is due to the fact
that these points belong to the class clutter, an under-represented
class. Therefore, they have the strongest impact in term of IoU.
Finally, the two degraded strategies which rely on single annota-
tion channel bring little or no improvement even though it is
slightly better for the INRIA dataset since it contains only two
classes.

4.5 Influence of the network backbone

We compare LinkNet to SegNet (Badrinarayanan et al., 2017),
UNet (Ronneberger et al., 2015) and DeepLabv3 (Chen et al.,



Figure 7. Study of the impact of the architecture choice on the
Potsdam validation set sorted per IoU gain.

2017) which are standard segmentation networks with increas-
ing complexity and also to the following lighter architectures:
LEDNet (Wang et al., 2019a), ERFNet (Romera et al., 2017)
and D3Net (Carvalho et al., 2018). Figure 7 shows the results
obtained with the different architectures under the same training
and evaluating conditions. As expected since this framework is
agnostic to the network architecture, the gains are in the same or-
der of magnitude. Indeed, the initial IoU mean is 68.8% with a
standard deviation of 2.13 while the IoU gain mean is 3.9% with
a standard deviation of 0.4. Figure 7 also shows that the accuracy
gain of the interactive correction seems to be uncorrelated to the
accuracy of the initial segmentation map. For instance, the worse
initial architecture here – SegNet – is the average one in regards
to the IoU gain.

4.6 Influence of the volume of training data

Figure 8. Influence of the training set size on the initial IoU (top)
and on the IoU gain (bottom)

Figure 8 shows the influence of the training set size on our ap-
proach. The different behavior on the two datasets can be ex-
plained by their initial size difference.

On the INRIA dataset, since the initial training size is high, even
10% of the training data seems to be enough to provide a network
with a decent initial accuracy and a good ability to use the annota-
tions. Besides, if more data implies a better initial accuracy, it
does not improve the performances of the interactive correction.

This shows that the network has not learned to make a better use
of the annotations with supplementary data.

On the Potsdam dataset, even though the initial training size is
lower than in the INRIA dataset, the network is still initially quite
accurate with little training data. Indeed, according to the results
of (Castillo-Navarro et al., 2019), since there are pictures from
only one city, few training images are enough to learn the general
semantic of the dataset even if the full training set provides bet-
ter performances. However, the accuracy gain is really low with
little training data. For example, the IoU gain is less than 1%
with 20% of the initial volume of data while it is slightly over 4%
with the full training set. We believe that this lack of perform-
ance in low-data regime is due to over-fitting. Indeed, since there
are only a few training images in this scenario, there are also less
possible annotations and they might not fully reflect the reality
of the test set. Besides, if the network over-fits on these few im-
ages, it might also consider the annotations as unnecessary for the
segmentation.

Therefore, as shown by the study on the Potsdam dataset, a cer-
tain amount of data seems necessary to optimally use the annota-
tions. However, as shown by the study on the INRIA dataset,
the network ability to use the annotations reaches a plateau once
there is enough available training data.

4.7 Manual analysis

In this experiment, the images from the Potsdam validation set
have been manually refined by a human annotator. If the number
of clicks exceeds 120, we threshold it at 120 in order to make a
fair comparison with the the automatic process.

Local insights. On one hand, as shown on Figure 9, the refine-
ments can be very intuitive and effective on areas semantically
similar to the ones seen during training. On the other hand, if the
semantic is new compared to what is in the training set, the neural
networks have trouble to use the annotations efficiently.

1 - Initial
segmentation

2 - Annotation
phase

3 - Refined
segmentation

Ground-truth

Figure 9. Annotations lead to an easy false positive buildings
removal on the segmentation map

1 - Initial segmentation 2 - Annotation phase

3 - Refined segmentation Ground-truth

Figure 10. Difficult segmentation of an outside parking since the
network has not learned the semantic cars on building. Only the

car at the bottom is annotated and recognized.



For example, in the Potsdam dataset, there is only one outside car
park considered as building which means only one place with the
semantic ”car” surrounded by ”building” in the dataset. We kept
the associated image in the validation set to study the impact of
the annotations in this scenario. Figure 10 shows the outcome of
our approach on this car park. Since it also looks like a road, it
is initially difficult for the network to segment it correctly. Non-
etheless, it succeeds to recognize the cars parked there. Then,
with building annotations, the network successfully recognizes a
building. However, it also considers that the vehicles parked there
are now part of the building since it has never seen the class ”car”
surrounded by the class ”building” during training. As we can see
on Figure 10, with supplementary car annotations, the network
can still recognize the correct semantic of the scene. However,
the process in this case is not very smooth and intuitive since the
cars which were primarily well recognized need to be annotated
nonetheless. This example shows that our framework does not
perform optimally when it is faced to areas with a different se-
mantic compared to the ones present in the training set.

Figure 11. Click distribution on an image from Potsdam in
automatic (left) and manual (right) evaluations. The colors

represent the different classes.

General insights. Regarding the click distribution, as shown in
Figure 11, a human operator tends to focus clicking on specific
areas while the automatic evaluation rather spreads the annota-
tions all across the image. However, as shown in Figure 12, these
grouped clicks seem to efficiently increase the metric. Indeed,
with the manual evaluation, 4 classes out of 6 are more improved
and the mean IoU gain is overall better. This shows the efficiency
of our approach with a real user in the loop. Finally, Figure 13
shows qualitative results before and after human interaction.

Figure 12. Comparison of the IoU evolution between an
automatic and a manual evaluation on the Potsdam dataset.

Before HI (87.5%) After HI (90.4%) Ground-truth

Figure 13. Full predictions and their accuracy before/after
human interaction (HI) on an image from Potsdam

5. CONCLUSION

We have proposed in this article an interactive multi-class seg-
mentation framework for aerial images. Starting from a neural
network designed for semantic segmentation purpose, it consists
in training this network to exploit user annotation inputs. At test-
ing time, user annotations are input in the neural network without
changing the parameters of the model, hence the interactive se-
mantic segmentation process is swift and efficient. Through ex-
periments on two public aerial datasets, we have shown that in-
teractive refinement is efficient for all classes. It improves classi-
fication results by 4% on average for 120 clicks and mainly, pro-
duces segmentation maps which are visually more rewarding. We
have shown that our interactive process is efficient whatever the
network backbone is. We have also investigated different repres-
entations of the annotations and have concluded that clicks po-
sitioned inside instances and encoded using distance transform
carry the most meaningful information. In the future, we will
further investigate class-dependent annotation encoding.
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