

Beyond Labels!

Weakly-supervised, Continual, and Semi-supervised Learning for Earth Observation

Bertrand Le Saux January 10, 2021

ESA/ESRIN, Φ-Lab, I-00044 Frascati (RM), Italy

European Space Agency

Introduction

European Space Agency

• The **availability of large, public datasets** has been key for the progress in computer vision and image processing.

= II ⊾ := = + II = ≝ = II II = = := := ∅ II = := ∅ ₩ \=

l e l

• The **availability of large, public datasets** has been key for the progress in computer vision and image processing.

• The **remote sensing** community has also developed public datasets: **land cover mapping, change detection, building detection**, etc.

__ II ⊾ := = + II = ≝ __ II II __ _ = := ₪ II _ II @ ₩ `` ``

• The **availability of large, public datasets** has been key for the progress in computer vision and image processing.

- The **remote sensing** community has also developed public datasets: **land cover mapping, change detection, building detection**, etc.
- ▲ Main issues:
 - \rightarrow Limited surface covered w.r.t. the planet.
 - \rightarrow Classes (mostly land-cover) limited w.r.t. ImageNet.
 - → Everyday, new data capture a *changing* world.
 - → Almost all designed for fully supervised methods

Motivation and current status

- A generic goal: semantic segmentation (good old pixel-wise classification) ~> automatic cartography.
- Deep learning is the state of the art:
 - 92% ISPRS Vaihingen or Potsdam;
 - 80+% Houston DFC2018;
 - 75+% DeepGlobe Buildings;
 - SEN2MS/DFC2020 55-60%,
- General knowledge: With enough annotated data, one can train and predict everywhere!

= II ▶ II = + II = ≝ = II II = = ≝ = Ø II = II Ø ₩ 🛏 🕨

Deep Learning Models to learn *Beyond Labels* Because the world is not fully labelled...

> • The good, the bad and the ugly *label* [†]: limited data with inadequate labels.

For a few *labels* more [†]:

limited data with labels, and a few labels on new data.

For a fistful of *labels* [†]:

limited data with labels, and lots of unlabelled data.

[†] Sergio Leone, "Dollar trilogy", 1964-1966.

Deep Learning Models to learn Beyond Labels Because the world is not fully labelled...

[†] Sergio Leone, "Dollar trilogy", 1964-1966.

The good, the bad and the ugly *label*: Weakly-supervised Learning

European Space Agency

l e l

High Resolution Semantic Change Detection

- Automatically generated from open databases
 - Images: IGN's BD ORTHO
 - Labels: Parcel-based Copernicus Urban Atlas Change 2006-2012
- 291 10000×10000 image pairs
- High resolution (50 cm/pixel), 7275 km² of total imaged area
- Multitask: change detection and land cover mapping.

 ---> Understand the types of changes that the images contain.

Daudt, Le Saux, Boulch & Gousseau, Multitask Learning for Large-scale Semantic Change Detection CVIU 2018. Dataset available from: https://rcdaudt.github.io/hrscd/

Label Noise

Data

HRSCD has label noise due to: *automatic vector annotations* and *temporal misalignment* between images and labels.

Aim

Improve the accuracy of the predictions with respect to the imaged objects.

Figure 1: HRSCD examples of: (a) too large change markings, (b) false negatives, and (c) false positives.

= II 🛏 II = + II = 🗏 = II II = = II = M II = II II 💥 🖬 🖡

Supervision with Noisy Labels

- Direct supervision on HRSCD labels leads the network to predict blobs around detected changes to compensate for ground truth inaccuracies.
- Structure of label noise leads network to make biased predictions.
- Real and perceived class imbalance are different, which makes class weight calculations less accurate.

 Image 1
 Image 2
 Ground-truth
 Prediction

 Figure 2:
 Result of training network with noisy labels.

Guided Anisotropic Diffusion ¹⁺²

1000 it.3000 it.10000 it.Figure 3: Results of Guided Anisotropic Diffusion. Edges in the guide image
are preserved in the image to filter by various GAD iterations.

= ■ ► = = + ■ = = = = 1 ■ ■ = = = = ■ ■ ■ ■ = = = ■ ■ + = ++

Perona & Malik, Scale-space and edge detection using anisotropic diffusion TPAMI 1990.
 He, Sun & Tang, Guided Image Filtering, ECCV 2010.

Guided Anisotropic Diffusion as Post-Processing

Figure 4: Guided anisotropic diffusion allows edges from the guide images to be transferred to the target image, improving the results.

Iterative Training and Label Cleaning

Main Idea

Fix the incorrect reference labels by using network predictions! (with caution) $% \left({{\left({{{\rm{A}}} \right)}_{{\rm{A}}}} \right)_{{\rm{A}}}} \right)$

Figure 5: Alternate optimisation of segmentation network / label cleaning.

Daudt, Le Saux, Boulch & Gousseau, Guided Anisotropic Diffusion and Iterative Learning for Weakly Supervised Change Detection, CVPR/EarthVision 2019.

▋▌▙▖▋▋ ᆕ ┼▐▌ ▀ 塗 こ ▋▌▋▋ こ 2 ▓ ▃ Ø▌▋▌ こ ▓ 極▕ヤ▎

Referring back to the reference data at each iteration is essential to avoid performance degradation.

Figure 6: Ablation study: referring back to reference data at each iteration is essential to avoid performance degradation.

Results: Examples

Figure 7: Results using the iterative network optimisation with GAD data cleaning with complete inference pipeline.

Weak-supervision conclusion

Noisy Labels and Weakly Supervised Learning

- Reduced the effect of label noise through iterative training
- Guided anisotropic diffusion algorithm for post-processing results

Code: https://github.com/rcdaudt/guided_anisotropic_diffusion.

For a few *labels* more: Continual Learning

European Space Agency

1+1

Automatic cartography by semantic segmentation

Dense classification of an image now done by Deep Neural Networks.

- EO use cases: Land cover classification, building detection,...
- DNNs are powerful but may fail when:
 - they face constraints such as domain shifts
 - training data is limited or labels are flawed.

→ Our solution: Add a human in the loop to interactively refine the segmentation maps.

1 - Initial segmentation

2 - Annotation phase

3 - Refined segmentation

Ground-truth

Annotations lead to an easy false positive buildings removal (source: INRIA dataset)

Baseline: LinkNet

An efficient neural network architecture designed for semantic segmentation with a encoder/decoder architecture relying on ResNet.

Initial prediction

Ground-truth

Segmentation map initially proposed by the neural network (source: ISPRS Potsdam dataset)

Chaurasia & Culurciello, LinkNet: Exploiting encoder representations for efficient semantic segmentation VCIP 2017.

DISIR: Interactive learning with no retraining

DISIR: Deep Image Segmentation with Interactive Refinements

A framework for semantic segmentation with a human-in-the-loop to interactively guide a neural network to enhance its performances using user annotations as guidance

Initial prediction

Initial prediction with one annotation

Ground-truth

The annotation *almost* leads to a correction of the segmentation map (source: ISPRS Potsdam dataset).

Lenzner, Le Saux, Luminari, Chan-Hon-Tong & Le Besnerais DISIR: Deep Image Segmentation with Interactive Refinements ISPRS Annals 2020. Code: https://github.com/delair-ai/DISIR

= ■ ► # = + ■ # = ≝ = ■ | ■ = = # **■ ■** ■ **■ ■ ■ ■ ■**

DISIR: Inference and Interactive Refinement

- A human in the loop interactively improves segmentation maps given by a neural network
- Annotations: Points representing the label of the clicked pixel
- Key idea: Concatenation of annotations and RGB image at input
- No retraining: guarantees the swiftness of the process

= ₩ ► # = + ₩ = ≝ = ₩ ₩ = 2 # = @ ₩ = # ₩ ₩ ₩ ₩

DISIR: Trick¹ for Training

- At inference: annotations are clicked by the user for refinement...
- At training: annotations are simulated from the ground-truth
- Extended to multi-class labelling
- Extended representation:
 - Positioning: Inside clicks or border clicks
 - Encoding: Binary disks or euclidean distance transform

Annotations sampled from the ground-truth

Binary (left) vs distance transform (right)

¹ Xu et al., Deep Interactive Object Selection, CVPR 2016.

DISCA: Deep Image Segmentation with Continual Adaptation

A framework for semantic segmentation with a human-in-the-loop to interactively retrain a neural network to enhance its performances using user annotations as a sparse ground truth

Initial prediction

Initial prediction with one annotation

Ground-truth

The annotation leads to a correction of the segmentation map (source: ISPRS Potsdam dataset)

Lenzner, Chan-Hon-Tong, Luminari, Le Saux & Le Besnerais Interactive Learning for Semantic Segmentation in Earth Observation ECML-PKDD/MACLEAN 2020. Code: https://github.com/delair-ai/DISCA

= II ⊾ II = + II = ≝ = II II = = II = II II = II II ₩ 🖬 |

Dvelving into DISCA

Top: Initial segmentation phase. Left: Interactive guidance. Right: Interactive learning.

- Learn from the annotations used as a sparse reference.
- Avoid forgetting by using the initial prediction as regularization.

= •• ► •= + • • • = ≝ = •• • • = = ≝ = • • • •

	DISIR	DISCA		DISIR	DISCA		DISIR	DISCA
Before	70.6		Before	85.4		Before	85.9	
After	71.3	72.2	After	86.4	86.5	After	89.5	90.6

(a) ISPRS Potsdam (b) INRIA buildings

(c) AIRS

Mean IoU obtained before and after the two interactive processes of only 10 clicks (without or with modified weights).

Ground-truth

Initial prediction with one annotation

DISIR

DISCA

4

Results

	DISIR	DISCA		DISIR	DISCA		DISIR	DISCA
Before	70	0.6	Before	8	5.4	Before	85.9	
After	71.3	72.2	After	86.4	86.5	After	89.5	90.6

(a) ISPRS Potsdam (b) INRIA buildings (c) AIRS

Mean IoU obtained before and after the two interactive processes of only 10 clicks (without or with modified weights).

Ground-truth

Initial prediction with one annotation

DISIR

DISCA

1+1

More annotations

DISIR after more annotations

Domain adaptation: Transfer your model on new locations!

- Train to segment buildings on AIRS; apply model on ISPRS Potsdam
- Interactive training on 10 annotations
- Compared to a network trained to segment buildings *directly* on ISPRS Potsdam
- The network is able to adapt quickly!.

IoU evolution in a domain adaptation setup

Ground-truth

Initial prediction

Prediction after learning on 10 annotations

Control prediction

•

Building segmentation from the ISPRS validation dataset with a network pre-trained on AIRS.

Take away message

Two complementary approaches to *interactively enhance* segmentation maps proposed by a neural network with *user annotations*.

- 1. Modify the inputs of the network: Fast and local
 - DISIR: Deep Image Segmentation with Interactive Refinement.
 Annotations as an add. input, simulated from ground-truth at training.
- 2. Modify the weights of the networks: Slower and global
 - DISCA: Deep Image Segmentation with Continual Adaptation.
 Annotations' loss is back-propagated trough the model, using initial prediction as a regularisation.

What's next

Reinforcement policies in order to better leverage information provided by the user.

Help flood mapping from satellite imagery with in-situ information.

Figure 8: Improving automatic cartography with geo-located information.

Data: Cloud2Street's SEN1Floods11 https://github.com/cloudtostreet/Sen1Floods11

Continual Learning as a refiner network

Two strategies to collect street information:

- Social media scraping (low dispersion)
- Trained data collector on site (high dispersion)

Sunkara, Purri, Le Saux & Adams, Improving Flood Maps With Crowdsourcing and Semantic Segmentation, NeurIPS/CCAI 2020.

For a few labels more: Crowdsourcing

Results

- Geo-localised information helps!
- High dispersion (dedicated info collectors) leads to better improvement

Sunkara, Purri, Le Saux & Adams, Improving Flood Maps With Crowdsourcing and Semantic Segmentation, NeurIPS/CCAI 2020.

For a fistful of *labels*: Semi-supervised Learning

European Space Agency

4

MiniFrance in numbers

- Very large dataset for semantic segmentation.
- > 53000 km² of surface coverage and ~ 150 GB of data.
- 16 conurbations all over France.
- Aerial images from BD ORTHO (IGN) at 50cm/pixel resolution and RGB encoding.
- 15 land-use classes from Copernicus UrbanAtlas.

MiniFrance in images

- Quantity and variability of data.
- Higher semantics, not visual classes.

- Different class appearances.
- Urban and countryside scenes.

MiniFrance: The Semi-Supervised Partition

1+1

MiniFrance: An EO Semi-supervised Learning Benchmark

→ MiniFrance w.r.t EO datasets at sub-meter resolution (circle area proportional to the surface covered)

Tools for multi-location dataset analysis

Two conditions for good semi-supervised learning:

- \rightarrow Appearance similarity
- \rightarrow Class representativeness

Tools for multi-location dataset analysis

Two conditions for good semi-supervised learning:

- → Appearance similarity
- \rightarrow Class representativeness

How can we assess it?

- Encode images with pre-trained CNN.
- Use t-SNE for 2D visualization.

Tools for multi-location dataset analysis

Two conditions for good semi-supervised learning:

- \rightarrow Appearance similarity
- \rightarrow Class representativeness

How can we assess it?

- Encode images with pre-trained CNN.
- Use t-SNE for 2D visualization.
- Use one-class SVM to estimate city distributions on the 2D space.
- Evaluate appearance similarity.

Assessing appearance similarity

$$loU(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$
$$loT(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_2|}$$

 Table 1: IoU and IoT scores between training data

 - labelled and unlabelled - and test data.

<i>S</i> ₁ - <i>S</i> ₂	$loU(S_1,S_2)$	$loT(S_1,S_2)$			
Labelled - Test	63 %	64 %			
Unlabelled - Test	87 %	93 %			

Assumption: to learn a class, one should see at least one example of it. \rightarrow All classes in the test split have training examples in the labelled split.

= ## 1= = + ## = = = ## ## = = ## ## ## ## ## ## !#

- MiniFrance is a challenging dataset that provides lifelike use-cases:
 - \rightarrow Diversity of images.
 - \rightarrow Land use/land cover classes with high semantic level.
 - \rightarrow First dataset designed for semi-supervised learning in EO.
- The MiniFrance suite is **publicly available for download!** at: https://ieee-dataport.org/open-access/minifrance

Castillo-Navarro, Audebert, Le Saux, Boulch & Lefèvre,

Semi-Supervised Semantic Segmentation in Earth Observation: The MiniFrance Suite, Dataset Analysis, and Multi-task Network Study, Machine Learning 2020.

Semi-supervised learning cast as multi-task

 Study of different neural network architectures and shared parameters configuration to perform semi-supervised learning.

• In this context the loss to optimize is expressed as:

 $\mathscr{L}(x) = \mathscr{L}_{s}(\phi_{s}(x), y) + \lambda \mathscr{L}_{u}(\phi_{u}(x), x)$

x: input image, y: target, $\phi_5(x)$ and $\phi_u(x)$: supervised and unsupervised output of the network, respectively.

• \mathscr{L}_s is a supervised loss for semantic segmentation (usually cross entropy) and \mathscr{L}_u an unsupervised loss term.

= II b = = + II = ≝ = II II = = = # = 0 II = = II 0 ₩ i= I•

• The choice of \mathscr{L}_u depends on the task to perform along with semantic segmentation, e.g.: Reconstruction (\mathscr{L}_1 , etc.), Image segmentation (relaxed k-means loss, etc.).

Backbone	Oracle \mathcal{L}_{ce}		Supervised \mathcal{L}_{ce}		Semi-supervised (BerundaNet-late) $\mathcal{L}_{ce} + \lambda \mathcal{L}_1$ $\mathcal{L}_{ce} + \lambda \mathcal{L}_{km}$			Net-late) - $\lambda \mathcal{L}_{km}$
	OA	mIoU	OA	mIoU	OA	mIoU	OA	mIoU
SegNet U-Net	59.06 57.71	$23.95 \\ 25.25$	$\begin{array}{c} 36.76\\ 46.30 \end{array}$	$\begin{array}{c} 14.03 \\ 18.18 \end{array}$	$\begin{array}{c} 45.52\\ 47.90\end{array}$	14.43 18.70	$\begin{array}{c} 42.26\\ 46.92 \end{array}$	15.75 18.26

- Supervised settings vary a lot depending on quantity of labelled data.
- Semi-supervised strategies exhibit promising results, whatever the architecture used as backbone.

Semi-supervised segmentation maps

1. Reconstruction

- → Generate an output as close as possible to the original input, using standard **p-norms** e.g. \mathcal{L}_1 , \mathcal{L}_2 losses.
- 2. Unsupervised Segmentation
 - → Partition an image into multiple segments, where pixels in a segment share some properties, like color, intensity, or texture, e.g. **Mumford-Shah** functional \mathcal{L}_{MS} , **Relaxed** K-**means** \mathcal{L}_{km} .

3. Self-supervision

→ Build a supervised task from completely unlabelled data by producing labels from the data itself e.g. **Inpainting:**, **Jigsaw puzzle** \mathscr{L}_{js} .

Castillo-Navarro, Le Saux, Boulch & Lefèvre, On Auxiliary Losses for Semi-Supervised Semantic Segmentation, ECML-PKDD/MACLEAN 2020.

Results

Christchurch (NZ) Aerial Semantic Dataset ¹

VHR images at 10cm/pix.; 4 classes, 2 labelled / 20 unlabelled / 2 valid. tiles.

- → Semi-supervised approaches outperform the supervised setting!
- \rightarrow Best scores are obtained with segmentation losses (\mathscr{L}_{km} and \mathscr{L}_{MS} .)

¹ Randrianarivo, Le Saux, & Ferecatu, Man-made structure detection with deformable part-based models IGARSS 2013. CASD available from: Zenodo / https://blesaux.github.io/data/

And Visually...

→ The supervised approach is the only one that mistakes the shadow of trees over the river as a building.

And Visually...

Image

→ The \mathscr{L}_{km} loss is the only one that correctly segments the central building.

Unlabelled data and semi-supervised learning (SSL)

- A **new benchmark** for SSL: MiniFrance challenges the potential of deep networks and provides lifelike use-cases.
- Various **semi-supervised networks based on multi-task learning** (BerundaNet), to handle labelled and unlabelled data at training.
- Semi-supervision **improves** classification results on MiniFrance and CASD datasets.
- **Segmentation losses** for the auxiliary task seem to be the more appropriate, quite intuitively w.r.t. to the primary task.

Concluding remarks

_ II ⊾ II = + II = ≝ _ II II _ = = H _ M II = II Ø ₩

European Space Agency

1+1

What's next

Space Today

- 1200+ satellites are now evolving around Earth
- Constellations will be tomorrow's standard, with unprecedented high acquisition frequency and data volume

What it implies

➡ A major change is coming in the way we process EO data

Dealing with unlabelled data

- Reinforcement, continual, active learning
- Unsupervised, self-supervised, semi-supervised learning
- Few or zero-shot learning, transfer learning

In this PRRS workshop: Kölle et al, Remembering Both the Machine and the Crowd when Sampling Points: Active Learning for Semantic Segmentation of ALS Point Clouds. Leenstra et al., Self-supervised pre-training enhances change detection in Sentinel-2 imagery

二 •• ▶ :: = + • • = = :: _ • • • = :: _ :: _ @ •• = :: [] ※ `` |+|

Dealing with unlabelled data

- Continual learning over time, upgrading the models place after place → go beyond the "fixed dataset" paradigm and move towards life-long learning;
- Unsupervised statistics, with generative models to estimate the underlying distribution of EO data ~> allow both more efficient downstream tasks and simulation.

The End

Thank you for your attention !

Primary contributors:

And: Alexandre Boulch, Yann Gousseau, Nicola Luminari, Adrien Chan-Hon-Tong, Guy Le Besnerais, Matthew Purri, Jennifer Adams, Nicolas Audebert, Sébastien Lefèvre.

Mail: bertrand.le.saux@esa.int

Web: https://blesaux.github.io