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Introduction



Context

• The availability of large, public datasets has been key for the
progress in computer vision and image processing.

• The remote sensing community has also developed public datasets:
land cover mapping, change detection, building detection, etc.

4! Main issues:
→ Limited surface covered w.r.t. the planet.
→ Classes (mostly land-cover) limited w.r.t. ImageNet.
→ Everyday, new data capture a changing world.
→ Almost all designed for fully supervised methods
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Motivation and current status

• A generic goal: semantic segmentation (good old pixel-wise
classification)  automatic cartography.

• Deep learning is the state of the art:
• 92% ISPRS Vaihingen or Potsdam;
• 80+% Houston DFC2018;
• 75+% DeepGlobe Buildings;
• SEN2MS/DFC2020 55-60%,

• General knowledge: With enough annotated data, one can train
and predict everywhere!
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In real life...

Deep Learning Models to learn Beyond Labels
Because the world is not fully labelled...

• The good, the bad and the ugly label †:
limited data with inadequate labels.

• For a few labels more †:
limited data with labels, and a few labels on new data.

• For a fistful of labels †:
limited data with labels, and lots of unlabelled data.

† Sergio Leone, "Dollar trilogy", 1964-1966.
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In real life... new solutions are needed

Deep Learning Models to learn Beyond Labels
Because the world is not fully labelled...

• The good, the bad and the ugly label †:
limited data with inadequate labels.

→ Weakly-supervised learning
• For a few labels more †:

limited data with labels, and a few labels on new data.
→ Continual learning

• For a fistful of labels †:
limited data with labels, and lots of unlabelled data.

→ Semi-supervised learning

† Sergio Leone, "Dollar trilogy", 1964-1966.
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The good, the bad and the ugly
label :
Weakly-supervised Learning



High Resolution Semantic Change Detection

• Automatically generated from open databases
• Images: IGN’s BD ORTHO
• Labels: Parcel-based Copernicus Urban Atlas Change 2006-2012

• 291 10000x10000 image pairs

• High resolution (50 cm/pixel), 7275 km2 of total imaged area

• Multitask: change detection and land cover mapping.
 Understand the types of changes that the images contain.

Image 1 Land-Cover 1 Image 2 Land-Cover 2 Change map

Daudt, Le Saux, Boulch & Gousseau, Multitask Learning for Large-scale Semantic Change Detection CVIU 2018.
Dataset available from: https://rcdaudt.github.io/hrscd/
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Label Noise

Data
HRSCD has label noise
due to: automatic vector
annotations and temporal
misalignment between
images and labels.

Aim
Improve the accuracy of
the predictions with
respect to the imaged
objects.

(a)

(b)

(c)

Figure 1: HRSCD examples of: (a) too large change
markings, (b) false negatives, and (c) false positives.
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Supervision with Noisy Labels

• Direct supervision on HRSCD labels leads the network to predict
blobs around detected changes to compensate for ground truth
inaccuracies.

• Structure of label noise leads network to make biased predictions.

• Real and perceived class imbalance are different, which makes class
weight calculations less accurate.

Image 1 Image 2 Ground-truth Prediction

Figure 2: Result of training network with noisy labels.
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Guided Anisotropic Diffusion 1+2

Guide image Input image 300 it.

1000 it. 3000 it. 10000 it.
Figure 3: Results of Guided Anisotropic Diffusion. Edges in the guide image
are preserved in the image to filter by various GAD iterations.

1 Perona & Malik, Scale-space and edge detection using anisotropic diffusion TPAMI 1990.
2 He, Sun & Tang, Guided Image Filtering, ECCV 2010.
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Guided Anisotropic Diffusion as Post-Processing

Image 1 Image 2
First

prediction

2000 it. 5000 it. 20000 it.

Figure 4: Guided anisotropic diffusion allows edges from the guide images to
be transferred to the target image, improving the results.
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Iterative Training and Label Cleaning

Main Idea
Fix the incorrect reference labels by using network predictions! (with
caution)

CLEAN DATA

New reference
data

Predictions

Original
ground truth
(first step)

Resume
training with

new reference
data

Train  network

TRAIN NETWORK

Reference
generation

1. Process
predictions

2. Combine
with original GT

3. Recalculate
class weights

First step
Initialization
of the loop

Prediction / refinement loop

Figure 5: Alternate optimisation of segmentation network / label cleaning.

Daudt, Le Saux, Boulch & Gousseau, Guided Anisotropic Diffusion and Iterative Learning for Weakly Supervised
Change Detection, CVPR/EarthVision 2019.
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Results: Iterative training and label cleaning

Referring back to the reference data at each iteration is essential to
avoid performance degradation.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Hyperepoch number
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Sørensen Dice Coefficients - Reference Data Comparison

Baseline
Using reference data
Without reference data

Figure 6: Ablation study: referring back to reference data at each iteration is
essential to avoid performance degradation.
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Results: Examples

Image 1 Image 2 Noisy ref.
data

Naive pred. GAD

Figure 7: Results using the iterative network optimisation with GAD data
cleaning with complete inference pipeline.
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Weak-supervision conclusion

Noisy Labels and Weakly Supervised Learning

• Reduced the effect of label noise through iterative training

• Guided anisotropic diffusion algorithm for post-processing results

CLEAN DATA

New reference
data

Predictions

Original
ground truth
(first step)

Resume
training with

new reference
data

Train  network

TRAIN NETWORK

Reference
generation

1. Process
predictions

2. Combine
with original GT

3. Recalculate
class weights

First step
Initialization
of the loop

Prediction / refinement loop

Code: https://github.com/rcdaudt/guided_anisotropic_diffusion.
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For a few labels more:
Continual Learning



Context

Automatic cartography by semantic segmentation
Dense classification of an image now done by Deep Neural Networks.

• EO use cases: Land cover classification, building detection,. . .
• DNNs are powerful but may fail when:

• they face constraints such as domain shifts
• training data is limited or labels are flawed.

å Our solution: Add a human in the loop to interactively refine the
segmentation maps.

1 - Initial segmentation 2 - Annotation phase 3 - Refined segmentation Ground-truth

Annotations lead to an easy false positive buildings removal (source: INRIA dataset)
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State-of-the-art example

Baseline: LinkNet
An efficient neural network architecture designed for semantic
segmentation with a encoder/decoder architecture relying on ResNet.

Initial prediction Ground-truth

Segmentation map initially proposed by the neural network
(source: ISPRS Potsdam dataset)

Chaurasia & Culurciello, LinkNet: Exploiting encoder representations for efficient semantic segmentation VCIP 2017.
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DISIR: Interactive learning with no retraining

DISIR: Deep Image Segmentation with Interactive Refinements
A framework for semantic segmentation with a human-in-the-loop to
interactively guide a neural network to enhance its performances using
user annotations as guidance

Initial prediction Initial prediction with one
annotation

Prediction with the
annotation as input

Ground-truth

The annotation almost leads to a correction of the segmentation map
(source: ISPRS Potsdam dataset).

Lenczner, Le Saux, Luminari, Chan-Hon-Tong & Le Besnerais
DISIR: Deep Image Segmentation with Interactive Refinements ISPRS Annals 2020.
Code: https://github.com/delair-ai/DISIR
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DISIR: Inference and Interactive Refinement

Initialization phase Interactive loop

• A human in the loop interactively improves segmentation maps
given by a neural network

• Annotations: Points representing the label of the clicked pixel

• Key idea: Concatenation of annotations and RGB image at input

• No retraining: guarantees the swiftness of the process
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DISIR: Trick1 for Training

• At inference: annotations are clicked by the user for refinement...

• At training: annotations are simulated from the ground-truth

• Extended to multi-class labelling

• Extended representation:
• Positioning: Inside clicks or border clicks
• Encoding: Binary disks or euclidean distance transform

Annotations sampled from the ground-truth Binary (left) vs distance transform (right)

1 Xu et al., Deep Interactive Object Selection, CVPR 2016.
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DISCA: Continual Learning

DISCA: Deep Image Segmentation with Continual Adaptation
A framework for semantic segmentation with a human-in-the-loop to
interactively retrain a neural network to enhance its performances using
user annotations as a sparse ground truth

Initial prediction Initial prediction with one
annotation

Prediction after retraining Ground-truth

The annotation leads to a correction of the segmentation map
(source: ISPRS Potsdam dataset)

Lenczner, Chan-Hon-Tong, Luminari, Le Saux & Le Besnerais
Interactive Learning for Semantic Segmentation in Earth Observation ECML-PKDD/MACLEAN 2020.
Code: https://github.com/delair-ai/DISCA
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Dvelving into DISCA

 L

R Sparse GTRe-learning 

Annotator

RGB without annotations

Segmentation 
model

Initial output RGB with two annotations

Segmentation 
model

RGB and annotations

Concat.

RGB without annotations

Output

Updated segmentation model

Output

First approach Second approach

Top: Initial segmentation phase.
Left: Interactive guidance. Right: Interactive learning.

• Learn from the annotations used as a sparse reference.

• Avoid forgetting by using the initial prediction as regularization.
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Results

DISIR DISCA
Before 70.6
After 71.3 72.2

(a) ISPRS Potsdam

DISIR DISCA
Before 85.4
After 86.4 86.5

(b) INRIA buildings

DISIR DISCA
Before 85.9
After 89.5 90.6

(c) AIRS
Mean IoU obtained before and after the two interactive processes of only 10 clicks (without or

with modified weights).

Ground-truth Initial prediction with one
annotation

DISIR DISCA
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DISIR DISCA
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After 71.3 72.2
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DISIR DISCA
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After 86.4 86.5
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DISIR DISCA
Before 85.9
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DISIR DISCA

More annotations DISIR after more
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Domain adaptation: Transfer your model on new locations!

• Train to segment buildings on AIRS;
apply model on ISPRS Potsdam

• Interactive training on 10 annotations

• Compared to a network trained to
segment buildings directly on ISPRS
Potsdam

å The network is able to adapt
quickly!. Not building Building Average IoU

30

40

50

60

70

80

90

100

Io
U

1.4

7.1

6.6

35.7

4.0

21.4

0.7 1.2

2.0 3.1
1.3 2.2

Control experiment
Initial
Inputs modif.
Weights modif.

Domain adaptation
Initial
Inputs modif.
Weights modif.

IoU evolution in a domain adaptation setup

Ground-truth Initial prediction Prediction after learning on
10 annotations

Control prediction

Building segmentation from the ISPRS validation dataset with a network pre-trained on AIRS.
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In a nutshell...

Take away message
Two complementary approaches to interactively enhance segmentation
maps proposed by a neural network with user annotations.

1. Modify the inputs of the network: Fast and local
å DISIR: Deep Image Segmentation with Interactive Refinement.

Annotations as an add. input, simulated from ground-truth at training.

2. Modify the weights of the networks: Slower and global
å DISCA: Deep Image Segmentation with Continual Adaptation.

Annotations’ loss is back-propagated trough the model, using initial prediction as
a regularisation.

What’s next
Reinforcement policies in order to better leverage information provided
by the user.
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For a few labels more: Crowdsourcing

Context
Help flood mapping from satellite imagery with in-situ information.

Figure 8: Improving automatic cartography with geo-located information.

Data: Cloud2Street’s SEN1Floods11 https://github.com/cloudtostreet/Sen1Floods11
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For a few labels more: Crowdsourcing

Continual Learning as a refiner network
Two strategies to collect street information:

• Social media scraping (low dispersion)

• Trained data collector on site (high dispersion)

Sunkara, Purri, Le Saux & Adams, Improving Flood Maps With Crowdsourcing and Semantic Segmentation,
NeurIPS/CCAI 2020.

25



For a few labels more: Crowdsourcing

Results

• Geo-localised information helps!

• High dispersion (dedicated info collectors) leads to better
improvement

Sunkara, Purri, Le Saux & Adams, Improving Flood Maps With Crowdsourcing and Semantic Segmentation,
NeurIPS/CCAI 2020.
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For a fistful of labels:
Semi-supervised Learning



MiniFrance: An EO Benchmark for Semi-supervised Learning

MiniFrance in numbers

• Very large dataset for semantic
segmentation.

• > 53000 km2 of surface coverage
and ∼ 150 GB of data.

• 16 conurbations all over France.

• Aerial images from BD ORTHO
(IGN) at 50cm/pixel resolution and
RGB encoding.

• 15 land-use classes from
Copernicus UrbanAtlas.
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MiniFrance in images

• Quantity and variability of data.
• Higher semantics, not visual

classes.

• Different class appearances.
• Urban and countryside scenes.
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MiniFrance: The Semi-Supervised Partition

å First remote sensing dataset
designed for Semi-supervised
Semantic Segmentation.
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MiniFrance: An EO Semi-supervised Learning Benchmark

   MiniFrance w.r.t EO datasets at sub-meter resolution (circle area
proportional to the surface covered)
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Tools for multi-location dataset analysis

Two conditions for good
semi-supervised learning:

→ Appearance similarity
→ Class representativeness

How can we assess it?

• Encode images with
pre-trained CNN.

• Use t-SNE for 2D
visualization.

• Use one-class SVM to
estimate city distributions
on the 2D space.

• Evaluate appearance
similarity.
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Assessing appearance similarity

Labeled split Unlabeled split Test split

IoU(S1,S2)=
|S1∩S2|
|S1∪S2|

IoT (S1,S2)=
|S1∩S2|

|S2|

Table 1: IoU and IoT scores between training data
– labelled and unlabelled – and test data.

S1 - S2 IoU(S1,S2) IoT (S1,S2)

Labelled - Test 63 % 64 %

Unlabelled - Test 87 % 93 %
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Assessing class representativeness
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Test split

Assumption: to learn a class, one should see at least one example of it.
→ All classes in the test split have training examples in the labelled split.
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MiniFrance in brief

• MiniFrance is a challenging dataset that provides lifelike
use-cases:
→ Diversity of images.
→ Land use/land cover classes with high semantic level.
→ First dataset designed for semi-supervised learning in EO.

• The MiniFrance suite is publicly available for download! at:
https://ieee-dataport.org/open-access/minifrance

Castillo-Navarro, Audebert, Le Saux, Boulch & Lefèvre,
Semi-Supervised Semantic Segmentation in Earth Observation: The MiniFrance Suite, Dataset Analysis,
and Multi-task Network Study, Machine Learning 2020.

34

https://ieee-dataport.org/open-access/minifrance


Semi-supervised learning cast as multi-task

• Study of different neural network architectures and shared
parameters configuration to perform semi-supervised learning.

BerundaNet-early BerundaNet-late W-Net

• In this context the loss to optimize is expressed as:

L (x)=Ls(φs(x),y)+λLu(φu(x),x)

x: input image, y : target, φs (x) and φu(x): supervised and unsupervised output

of the network, respectively.

• Ls is a supervised loss for semantic segmentation (usually
cross entropy) and Lu an unsupervised loss term.
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Semi-supervised learning results

• The choice of Lu depends on the task to perform along with
semantic segmentation, e.g.: Reconstruction ( L1, etc.), Image
segmentation (relaxed k-means loss, etc.).

• Supervised settings vary a lot depending on quantity of labelled data.

• Semi-supervised strategies exhibit promising results, whatever
the architecture used as backbone.
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Semi-supervised segmentation maps

Image GT Oracle Sup Semi (L1) Semi (Lkm)

Undisclosed Results
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Dvelving into auxiliary tasks

1. Reconstruction

→ Generate an output as close as possible to the original input, using
standard p-norms e.g. L1, L2 losses.

2. Unsupervised Segmentation

→ Partition an image into multiple segments, where pixels in a
segment share some properties, like color, intensity, or texture, e.g.
Mumford-Shah functional LMS , Relaxed K-means Lkm.

3. Self-supervision

→ Build a supervised task from completely unlabelled data by
producing labels from the data itself e.g. Inpainting:, Jigsaw
puzzle Ljs .

Castillo-Navarro, Le Saux, Boulch & Lefèvre, On Auxiliary Losses for Semi-Supervised Semantic Segmentation,
ECML-PKDD/MACLEAN 2020.
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Results

Christchurch (NZ) Aerial Semantic Dataset 1

VHR images at 10cm/pix.; 4 classes, 2 labelled / 20 unlabelled / 2 valid. tiles.

CASD ex. L1 L2 K-means Mumford-Shah Inpainting Jigsaw

Unsupervised losses

50%

60%

70%

80%

90%

Sc
or

es

+1.3% +1.6%
+3.4% +2.8% +2.0% +2.7%

+1.2% +1.3% +2.0% +1.9% +1.5% +1.8%

Supervised mIoU
Supervised Accuracy
mIoU gain
Accuracy gain

→ Semi-supervised approaches outperform the supervised setting!
→ Best scores are obtained with segmentation losses (Lkm and LMS .)

1 Randrianarivo, Le Saux, & Ferecatu, Man-made structure detection with deformable part-based models IGARSS 2013.
CASD available from: Zenodo / https://blesaux.github.io/data/
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And Visually...

Image GT Sup. L1 L2

Lkm LMS Lca Ljs

→ The supervised approach is the only one that mistakes
the shadow of trees over the river as a building.
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And Visually...

Image GT Sup. L1 L2

Lkm LMS Lca Ljs

→ The Lkm loss is the only one that correctly segments
the central building.
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Semi-supervised learning conclusions

Unlabelled data and semi-supervised learning (SSL)

• A new benchmark for SSL: MiniFrance challenges the
potential of deep networks and provides lifelike use-cases.

• Various semi-supervised networks based on multi-task
learning (BerundaNet), to handle labelled and unlabelled data
at training.

• Semi-supervision improves classification results on MiniFrance
and CASD datasets.

• Segmentation losses for the auxiliary task seem to be the
more appropriate, quite intuitively w.r.t. to the primary task.
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Concluding remarks



What’s next

Space Today

• 1200+ satellites are now
evolving around Earth

• Constellations will be
tomorrow’s standard, with
unprecedented high acquisition
frequency and data volume

What it implies
å A major change is coming in
the way we process EO data
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What’s next

Dealing with unlabelled
data

• Reinforcement, continual,
active learning

• Unsupervised,
self-supervised,
semi-supervised learning

• Few or zero-shot learning,
transfer learning

In this PRRS workshop:
Kölle et al, Remembering Both the Machine and the Crowd when Sampling Points: Active Learning
for Semantic Segmentation of ALS Point Clouds.
Leenstra et al., Self-supervised pre-training enhances change detection in Sentinel-2 imagery
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What’s next

Dealing with unlabelled data

å Continual learning over time, upgrading the
models place after place  go beyond the
"fixed dataset" paradigm and move towards
life-long learning;

å Unsupervised statistics, with generative
models to estimate the underlying distribution
of EO data  allow both more efficient
downstream tasks and simulation.
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The End

Thank you for your attention !

Primary contributors:

Rodrigo

Caye Daudt

Gaston

Lenczner
Veda

Sunkara
Javiera

Castillo-Navarro

And: Alexandre Boulch, Yann Gousseau, Nicola Luminari, Adrien Chan-Hon-Tong, Guy

Le Besnerais, Matthew Purri, Jennifer Adams, Nicolas Audebert, Sébastien Lefèvre.

Mail: bertrand.le.saux@esa.int Web: https://blesaux.github.io
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