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Abstract. The development of semi-supervised learning methods is es-
sential to Earth Observation applications. Indeed, labeled remote sens-
ing data are scarce and likely insufficient to train fully supervised mod-
els with good generalization capacities. Conversely, raw data are abun-
dant and therefore it is crucial to leverage unlabeled inputs to build
better deep learning models. This work addresses the problem of semi-
supervised semantic segmentation from a multi-task learning perspec-
tive. In this context, we explore several auxiliary tasks (reconstruction,
unsupervised segmentation or self-supervision), and corresponding un-
supervised losses, to perform along with semantic segmentation. Our
experiments show the potential of semi-supervised learning approaches
in a life-like scenario, outperforming a classical supervised setting.

Keywords: Semi-Supervised Learning · Semantic Segmentation ·Multi-
task Learning.

1 Introduction

Semantic segmentation, i.e. the problem of pixel-wise image classification, is of
special importance in Earth Observation (EO). Indeed, many applications can be
addressed as a semantic segmentation task, such as land cover mapping, build-
ing recognition or change detection. These tasks help us to deeply analyze and
better understand our planet. In the last decade, the development of deep learn-
ing techniques has allowed to perform semantic segmentation with impressive
success in an automatic way. Unfortunately, most of these methods rely heavily
on the availability of large amounts of annotated data to be trained on. For this
reason, special attention have been brought recently to the development of semi-
supervised techniques, that leverage unlabeled data together with labeled data
during the learning process. Semi-supervised learning is of significant interest in
remote sensing, since labeled data are hard and costly to obtain, as they usually
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require expertise knowledge to be annotated, while raw data are continuously
generated through satellites or drones.

Therefore, this work explores semi-supervised semantic segmentation from a
multi-task learning perspective. In this context, a deep neural network is trained
to perform two tasks simultaneously: the supervised semantic segmentation, as
the main task, and an unsupervised auxiliary task. The latter enables to use prior
information from data only –without labels–, in order to improve the results of
the main task. Then, the objective function to optimize can be expressed as
a weighted sum of two components: the segmentation loss –usually a standard
cross-entropy loss– and the auxiliary loss. Yet, it is still unclear which task to
perform along with semantic segmentation or which auxiliary loss to optimize.

In this paper, we review several auxiliary tasks and unsupervised losses for
semi-supervised semantic segmentation. In particular, we present the Relaxed K-
Means loss [4] and show it is very promising w.r.t. the state-of-the-art. We also
highlight the interest of the Chrischurch Aerial Semantic Dataset (CASD) [23]
for evaluating semi-supervised learning. More generally, we demonstrate the rel-
evance of semi-supervised learning over supervised approaches in a life-like sce-
nario where labeled data are scarce, while unlabeled data are abundant.

2 Related Work

Semi-Supervised Learning for Semantic Segmentation. The general idea is to
learn a representation function –mapping a data point to its target– from labeled
data and simultaneously leverage unlabeled data to improve this representation
by learning the intrinsic properties of data. Existing semi-supervised methods for
semantic segmentation in deep learning rely mostly on weak supervision, using
scribbles [8], bounding boxes [11] or image-level annotations [19] to produce
pixel-wise predictions. Fewer are the works that use completely unlabeled data
during the learning process. For instance, co-training methods usually train an
ensemble of segmentation models and use non-annotated images to exchange
information between each other [22]. Other studies [25,10] propose adversarial
approaches that integrate unlabeled data during training.

Self-Supervised Learning. Self-supervised (or unsupervised) learning aims to
learn from the data only, with no labels nor specific task objective [15]. More
exactly, it aims to accomplish pretext tasks that are self-induced, such as auto-
encoding or blank completion, often for pre-training. In computer vision, usual
pretext tasks are: predicting rotations [9], finding relative position of patches [7],
solving the jigsaw puzzle[18], inpainting [21] or colorization [31].

Semi- and Self-Supervised Learning in Earth Observation. In the field of remote
sensing, different approaches to benefit from unlabeled data have been developed.
Non-annotated examples are used to design sharper feature extractors in [30],
or to align manifolds for data coming from different modalities in [28]. Lately,
deep learning approaches have been developed to leverage weakly annotated
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data for different applications: land cover classification [17], change detection [5]
or building extraction [2]. Some recent works integrate unlabeled data to the
learning process, like [27] that proposes an alternating scheme to perform semi-
supervised semantic segmentation, or [32] that considers an adversarial training
strategy and uses unlabeled data for domain adaptation purposes.

Application of self-supervised methods in remote sensing is very recent. For
instance, [26] proposes a new contrastive approach especially designed for multi-
sensor data, while [29] introduces a colorization pretext task adapted to remote
sensing data, reconstructing visible colors from high-dimensional spectral bands.

3 Semi-Supervised Semantic Segmentation

In this paper, we approach semi-supervised semantic segmentation as a multi-
task problem. On the one hand, we learn to perform semantic segmentation
under supervision using labeled data, and on the other hand, we learn to solve
an auxiliary, unsupervised, task with raw data.

We choose to use BerundaNet-late [4], a simple and efficient network to ad-
dress the multi-task semi-supervised semantic segmentation problem. Berun-
daNet consists of one decoder and a double decoder, where one decoder learns
the supervised semantic segmentation task, while the second decoder is trained
to perform an auxiliary task. Let φs(·) and φu(·) be the functions learned by the
supervised and the unsupervised branch of the network, respectively. Let x be
the input image and y the target label, the semi-supervised loss is expressed as
a weighted sum of losses for each task:

L(x) = Ls(φs(x), y) + λLu(φu(x), x) (1)

where Ls is a supervised classification loss (usually cross-entropy loss), and thus
the only one depending on y, and Lu is an unsupervised loss chosen according to
the auxiliary task to perform. Section 4 presents some unsupervised tasks that
can be performed along with semantic segmentation. λ is an hyperparameter of
the model.

Since φs and φu partially share parameters, the additional unlabeled data will
help to capture intrinsic properties through the unsupervised task. BerundaNet-
late in particular has an almost-all shared parameters architecture, where only
the last layers are split into specific tasks, as shown in Figure 1. Besides, BerundaNet-
late is a versatile network and any classic encoder-decoder architecture can be
used as backbone.

4 Auxiliary Tasks and Losses

In the semi-supervised setting described above, one could consider different aux-
iliary or pretext tasks to perform along with supervised semantic segmentation.
In particular, we study three groups of auxiliary unsupervised tasks, which are
associated to different kinds of unsupervised loss functions.
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Fig. 1. BerundaNet-late architecture overview. unsupervised/supervised shared lay-
ers, is used for supervised layers only and is for unsupervised layers.

Notation: In what follows, we still note x the input image and xi is the i-th
pixel of the image. x̂ denotes the reconstructed version of x (x̂i, respectively).
N is the number of pixels in an image.

4.1 Reconstruction Losses

The objective of the reconstruction (or auto-encoding) task is to generate an
output as close as possible to the original input. For this reason, reconstruction
losses enforce a similarity between the output of the network and the input
image. Classical reconstruction losses are based on p-norms. In what follows we
consider L1 and L2 reconstruction losses as defined in equation (2):

L1(x) =
1

N

N∑
i=1

||xi − x̂i||1, L2(x) =
1

N

N∑
i=1

||xi − x̂i||22. (2)

4.2 Segmentation Losses

Image segmentation aims to partition an image into multiple segments, where
pixels in a segment share some properties, like color, intensity, or texture. This
task can be performed in an unsupervised manner –based on the input image
only– and might be a better complement to the supervised semantic segmenta-
tion task. We consider in this work two different unsupervised losses to perform
unsupervised image segmentation.

Relaxed K-means loss [4]. The goal is to find an optimal set of K colors
for encoding the image. As in the classic k-means algorithm, the relaxed k-
means alternatively optimizes centroids of color clusters ck (k ∈ {1,K}) and
membership matrices ŷ(k) of x to cluster k.
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Formally, the objective to minimize is given by equation (3):

Lkm(x) = L1(x, xc) + α

K∑
k=1

N∑
i=1

ŷ
(k)
i (1− ŷ(k)i ), (3)

xc corresponds to a quantized version of the image, that is obtained by

xc =

K∑
k=1

ck ⊗ ŷ(k), with ck =

∑N
i=1 xiŷ

(k)
i∑N

i=1 ŷ
(k)
i

. (4)

The relaxed k-means setting considers memberships ŷ
(k)
i ∈ [0, 1] that can be

obtained through a neural network (usually a soft-max output). ⊗ is the outer
product.

Mumford-Shah loss. Classical image segmentation methods solve the seg-
mentation problem by minimizing energy functions, such as the Mumford-Shah
functional [16]. Recent work [12] shows that this functional can be adapted to
be used as an unsupervised loss function in a deep neural network framework.

The unsupervised segmentation loss is then expressed as:

LMS(x) =

K∑
k=1

N∑
i=1

||xi − ck||22 ŷ
(k)
i + α

K∑
k=1

N∑
i=1

|∇ŷ(k)i | (5)

where we kept the same notations as before.

For both unsupervised segmentation losses, there are two hyperparameters to
set: α, a regularization weighting parameter and k, the number of unsupervised
clusters to identify. In our experiments, we set α = 1 and we compare results
for k ∈ {5, 10}. Section 5 reports only results for k = 10 since it exhibits better
peformances.

4.3 Self-Supervised Losses

Recently, self-supervised methods have shown impressive results on learning data
representations. The main idea behind self-supervision is to build a supervised
task from completely unlabeled data by producing labels from the data itself.
Many self-supervised tasks have been proposed lately, and we explore here two
pretext tasks to perform along with semantic segmentation, that can be easily
integrated to our semi-supervised framework.

Inpainting Similarly to the context autoencoder [21], we aim to solve the prob-
lem of filling in a missing piece in the image. The loss function is then expressed
in terms of L2 distance as

Lca(x) = L2 (M � x,M � φu((1−M)� x)) (6)
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where M is a binary mask (value of 1 for dropped pixels and 0 for input pixels)
and � the element-wise product.

There is an intrinsic hyperparameter to the inpainting problem: c, the crop
size to mask from the image. In our experiments we try c ∈ {80, 160} and in
Section 5 we report results for c = 80 since it led to the best results. In our
settings, masks are randomly chosen over the image.

Jigsaw puzzle Solving jigsaw puzzles using neural networks was first proposed
by [18] to learn visual representations. In brief, the task consists in cutting out
the image into 9 patches, shuffle them and train the network to retrieve the
original image.

In practice, we follow here a similar approach to [3], where a network is
trained to solve two tasks simultaneously (in our case, the jigsaw puzzle and the
semantic segmentation) and the input is an image with permuted patches. The
problem is then formulated as a classification task, using standard cross-entropy
loss. We use the maximal Hamming distance algorithm from [18] to define a
set of P allowed patch permutations. In our experiments we compare results for
P ∈ {30, 100}. Since P = 100 led to the best results, we report them in Section 5.

5 Experiments

The Christchurch Aerial Semantic Dataset [14]

The CASD comprises aerial imagery (≈ 5000× 4000 px per image) at 10 cm/px
resolution over Christchurch, New Zealand. Images were captured after the earth-
quake that struck the area on February 2011 and made available by Land In-
formation New Zealand1. Dense semantic annotations were produced by ON-
ERA/DTIS on 4 images [1,23], considering 4 classes: buildings, cars, vegetation
and background. The dataset also includes 20 aerial images without any kind
of annotation, which makes it suitable for semi-supervised learning algorithms.
In practice, we use a training partition containing labeled and unlabeled data
–2 annotated tiles and 20 non-annotated tiles–, and keep 2 annotated tiles for
validation.

Implementation Details

BerundaNet-late is used here with a U-Net [24] backbone. For all experiments,
it is trained using Adam optimizer [13] with a fixed learning rate of 10−4, during
50 pseudo-epochs. Each pseudo-epoch consists in 5000 labeled samples and 5000
unlabeled samples (for the fully supervised experiments only labeled data is
used). One sample is a 320 × 320 tile randomly chosen from training data.
During testing time, tiles are processed with a sliding window of 320×320 pixels
and overlap of 75%. PyTorch [20] is used for all implementations.

1 https://www.linz.govt.nz/land/maps/linz-topographic-maps/
imagery-orthophotos/christchurch-earthquake-imagery

https://www.linz.govt.nz/land/maps/linz-topographic-maps/imagery-orthophotos/christchurch-earthquake-imagery
https://www.linz.govt.nz/land/maps/linz-topographic-maps/imagery-orthophotos/christchurch-earthquake-imagery
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Due to the stochastic nature of the optimization process, all experiments are
averaged on 4 runs to obtain statistically significant results.

5.1 How to Harness Unlabeled Data?

Table 1 summarizes the results of our experiments with semi-supervision. Inter-
estingly, for every loss studied in Section 4, there exists one (or more) λ value
that allows to outperform the supervised setting.

Nevertheless, the best scores are obtained with unsupervised segmentation
losses, where the approach with the relaxed K-means loss shows significant im-
provements, with respect to the supervised setting: mIoU score improves by
+3.39%, while overall accuracy increases by +1.97%.

Table 1. Results comparison for supervised and semi-supervised methods over the
Christchurch Aerial Semantic Dataset.

Mode
Aux.
Task

Aux.
Loss

λ OA (%) mIoU (%)

Sup - - - 81.06± 0.46 67.43± 0.49

Semi-sup

Rec
L1 0.5 82.28± 0.55 68.78± 1.27
L2 5 82.36± 0.42 68.99± 0.85

Seg
Lkm 1 83.03± 0.42 70.82± 0.35
LMS 1 82.94± 0.26 70.24± 0.84

Self
Lca 5 82.57± 0.59 69.47± 0.7
Ljs 0.5 82.88± 0.95 70.17± 1.12

Figure 2 shows two visual examples of the different methods. In the first
example, the supervised approach is the only one that mistakes the shadow of
trees over the river as a building; the supplementary information provided by
unlabeled images to the semi-supervised methods allows to prevent this error.
In the second image, the Lkm loss is the only one that correctly segments the
central building, likely thanks to the color clustering capacity.

5.2 Influence of the λ Hyperparameter

We also study the impact of the weighting parameter λ on the segmentation
performance. Figure 3 illustrates the average behavior of each loss with respect
to the value of λ.

Three behavioral groups appear. Segmentation losses are robust to the choice
of λ and show, in general, better performances. L1 and Ljs work better for small
λ and require cautious hyperparameter tuning, as they are close to the fully-
supervised case. L2 and Lca losses show the same optimum for λ = 5, which
comes likely from the fact that inpainting uses L2 to estimate discrepancies.
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Image Ground truth Supervised L1 L2

Lkm LMS Lca Ljs

Image Ground truth Supervised L1 L2

Lkm LMS Lca Ljs

Fig. 2. Two examples of inference over the CASD dataset. buildings, cars,
vegetation and background.
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Fig. 3. Impact of the λ parameter on the semantic segmentation performance.
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In a multi-task setting, different tasks might have very different behaviors and
orders of magnitude. Tuning a weighting hyperparameter is not straightforward
and further work is needed to find a neat normalization. Some works have even
focused on adapting the multi-task loss balancing during training [6].

6 Conclusions

In this work, we have explored semi-supervised semantic segmentation in Earth
Observation from a multi-task learning perspective. We presented a review of
several auxiliary tasks and unsupervised losses to be used in such a setting. We
performed experiments over a life-like dataset, the CASD dataset, and showed
that it is well-suited for semi-supervised learning. This study also brought out
that unsupervised segmentation losses –and in particular the relaxed K-means
loss– are suitable as auxiliary losses for semantic segmentation. Indeed, they
outperformed other approaches and showed to be robust to the balancing hy-
perparameter (λ) of the model.

Finally, our experiments have shown the potential of semi-supervised learning
approaches over simple supervised learning in a realistic scenario, where labeled
examples are limited, while unlabeled images are abundant.
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