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Summary

Recently, micro-rotation confocal microscopy has enabled
the acquisition of a sequence of micro-rotated images of
nonadherent living cells obtained during a partially controlled
rotation movement of the cell through the focal plane.
Although we are now able to estimate the three-dimensional
position of every optical section with respect to the cell frame,
the reconstruction of the cell from the positioned micro-rotated
images remains a last task that this paper addresses. This is not
strictly an interpolation problem since a micro-rotated image
is a convoluted two-dimensional map of a three-dimensional
reality. It is rather a ‘reconstruction from projection’ problem
where the term projection is associated to the PSF of the
deconvolution process. Micro-rotation microscopy has a
specific difficulty. It does not yield a complete coverage of the
volume. In this paper, experiments illustrate the ability of the
classical EM algorithm to deconvolve efficiently cell volume
despite of the incomplete coverage. This cell reconstruction
method is compared to a kernel-based method of interpolation,
which does not take account explicitly the point-spread-
function (PSF). It is also compared to the standard volume
obtained from a conventional z-stack. Our results suggest
that deconvolution of micro-rotation image series opens some
exciting new avenues for further analysis, ultimately laying
the way towards establishing an enhanced resolution 3D light
microscopy.

Introduction

Our microscope is equipped with a dielectrophoretic field
control microelectrode cage that enables trapping of
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nonadherent living cells (Schnelle et al., 1993; Lizundia et al.,
2005; Renaud et al., 2008). Once a cell has been trapped,
it undergoes continuous unstable rotations around a main
axis (Shorte et al., 2003). During the rotation, a sequence of
microscopic images (Sk )1≤k≤N is obtained through the fixed
focal plane F at a given rate. Each image is taken under
the same microscopic conditions. Figure 6 (first column)
shows three images extracted from a sequence of 280 micro-
rotated images per turn of a cell in rotation. Among the
advantages of such an apparatus, is the ability to alleviate
the problem of anisotropy of the microscope resolution: the
resolution perpendicular to the focal plane is two to three
times lower than the resolution within the focal plane.
That is translated into the point-spread-function (PSF) of the
microscope, which is mainly elongated along the z-axis (see
Fig. 5).

Since the images are all recorded in the fixed plane F,
their positions inside the cell are unknown. However, these
positions can be estimated using the method presented in
Yu et al. (2007). So, here, we assume that the images have
been aligned according to these positions. The situation
where the cell is rotating and F is fixed is equivalent to the
dual situation where the cell is fixed and F is rotating (see
Fig. 3). Throughout these lines, we adopt the dual case. With
this viewpoint, we understand that the PSF whose main axis
is perpendicular to the focal plane has a spatially varying
orientation with respect to the volume: each image has its own
oriented PSF but the PSF shape remains the same during the
cell revolution. Let us note that volume reconstruction from
micro-rotated images is formally analogous to tomographic
reconstruction from projections: in tomography, one point of
the projection is modelled by the integral of the object over
a straight line through the volume whereas in our case, one
point in the image is modelled by a weighted integral of the
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object over the full volume, with weights given by the PSF of the
microscope.

Another particularity arises from our microscope
equipment. When F turns around an axis that is not included
into it, a part of the 3D space is never intercepted by the moving
plane, Fig. 3. Due to this incomplete coverage of the imaging
volume, a ‘black hole’ is apparent in the 3D cell representation
when this phenomena is not taken into account (see Fig. 7
(column 1), Fig. 8(b)). However, one image is not a perfect
slice; it is a weighted integral over the full volume. Therefore,
the voxels in the cell located in the ‘black hole’ contribute to the
images (at least if the size of the hole is not too large with respect
to the resolution of the microscope), and therefore the images
may contain information about the voxels located in the black
hole. This point explains why it is possible to reconstruct the
cell in the area of the black hole.

In the widefield imaging domain, a first attempt of
deconvolution of micro-rotated image series has been
presented in Laksameethanasan et al. (2006) and extended
in Laksameethanasan et al. (2008), using a classical approach
as in our paper. Unfortunately, in this paper the authors
ignore the black hole problem because they did not see it
since they mainly perform experiments based on simulated
data for which the rotation axis can be located within the focal
plane. To be unaware of the black hole amounts to assume
that the rotation axis lies in the focal plane. This property
cannot be realized because today the dielectrophoretic field
cage technology does not enable to control the cell movement
with such an accuracy. The morphology of the cell and its
interaction with the field implies an unstable movement that
cannot guaranty the stability of the rotation axis.

The contribution of our paper is twofold: we present
a deconvolution process taking into account the spatially
varying orientation of the PSF and the incomplete coverage
phenomena; and then we give a first evaluation of the
reconstruction by comparison with two others 3D cell
imaging. First, we experiment with the same protocol but
using a simpler interpolation method that can only partly
improve the resolution since the PSF is not used. It means
that we directly interpolate a set of micro-rotated images
of a convolved volume, and consequently, the resulting 3D
volume is not a deconvolved volume, but rather a smooth

representation of the reality. This first comparison helps to
distinguish the pure interpolation effects from those arising
from the deconvolution process. Second, an another protocol
is considered: the conventional z-stack. Contrary to the micro-
rotation protocol, the PSF orientation is here always oriented
towards the z-direction independently of the image position.
For this protocol, 3D cell imaging shows a poor resolution, but
above all, it enables to see that the micro-rotation imaging is
free from axial aberration.

Material and methods

The basic hardware consists of a 3D dielectrophoretic field cage
comprising micro-electrodes fabricated photo lithographically
on optically transparent glass substrates and assembled face-
to-face (Fig. 1). Cells suspended in a buffered medium can
be gently passed through the cage using an ultra-low-speed
micro-fluidic control, and trapped then manipulated inside the
cage using high-frequency polarization of dielectrics, creating
forces in the range of pico-Newtons repelling particles from
regions of high field strength towards electric field minima
(Fig. 2). This principle permits approximately stable
positioning of living cells within micrometer dimensions. The
live cell-traping/rotator offers some degree of control over
suspended cell (or other micro-object) position, and enables
a rotational control. As the cell rotation progresses, snapshot
images are recorded using a high-speed camera, and passing
through 360◦ the cell is observed from multiple angles of view.
This is far superior to existing ‘through-stack’ methods applied
to adherent cells because it multiplies by at least a factor fold
the available information content for subsequent processing.

Reconstruction method

Recall that we assume the cell is fixed and the focal plane is
rotating. The focal plane is assimilated to a square grid, that
is the image acquisition grid. In a given frame R = (oxyz), let
m be the unknown cell volume defined on a square 3D grid G,
such that the reference focal plane F is contained in (oxy). F k

denotes the position of the moving focal plane supporting the
image Sk . When the focal plane is moving, the shape of the PSF

Fig. 1. Scheme of micro chamber for high-resolution optics. (a) Two electrode planes are mounted face-to-face to built a closed micro channel, (b) Electric
field (red values correspond to high intensity) and combined particle guiding force distribution (arrows) in the central plane between the electrode planes.
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Fig. 2. Scheme of dielectrophoretic octode field cage with trapped cell.

� k remains unchanged but its orientation changes according
to the movement of the focal plane since the main axis of the
PSF is always perpendicular to F k .

Interpolation without deconvolution

In this section, we limit our treatment to the interpolation task.
It means that the PSF is not included into the image-formation
model. It enables to experimentally analyze the effect of the
deconvolution compared to the simple interpolation. Let us
emphasize that this method is not an alternative method to the
micro-rotation reconstruction by deconvolution. Practically,
it enables to get quickly a 3D representation that allows to
establish a first judgment on the reconstruction, as the absence
of an axial aberration. In fact, an alternative method would

Fig. 3. Focal plane movement and black hole. In this example, the black
hole is a cylinder and the rotation axis is confounded with the cylinder
axis.

be rather based on the fusion of several z-stacks as we shall
analyze in a forthcoming paper.

In the goal of interpolation and visualization, the
nondeconvolved volume, says m̃, is defined as a continuous
volume. We have to estimate m̃ given the sequence{Sk}. Using
the well-known kernel-based modelling (Wahba, 1999), the
continuous volume is written as a linear combination of
functions K(gr , ·), gr ∈ G :

m̃(·) =
∑

r

αrK(gr , ·),

where K(·, ·) is a kernel function modelling the spatial
dependence within m̃:

K(g, g ′) = ρ(||(g − g ′)||/λm̃), ∀ g, g ′ ∈ G .

With this definition, the volume m̃ is replaced by the
unknown set of parameters (αr ). We have chosen the Gaussian
function for ρ. λm̃ is a scale parameter that defines the range
of the spatial dependence, as a covariance function does.
Furthermore, it is well known that the norm of m̃ is

||m̃||2
H =

∑
r ,r ′

αr αr ′ K(gr , gr ′ ) .

We quantify the regularity of m̃ by its probability given by the
Gaussian law:

P (m̃) ∝ exp
(

−‖m̃‖2
H

2σ 2
m̃

)
, (1)

where σ 2
m̃ is the regularization parameter that tunes the

amplitude of the variations of m̃. Greater is the probability,
and greater is the regularity of m̃ with respect to the kernel K.
On the other hand, every image Sk is a noisy version of the
section m̃(F k ): Sk = m̃(F k ) + ε where ε denotes a Gaussian
white field:

P (Sk |m̃) ∝ exp
(

−‖Sk − m̃(F k )‖2

2σ 2
ε

)
. (2)

Following the Bayes rule, the estimate of α maximizes
the posterior probability P (m̃ | {Sk}) ∝ P (m̃)

∏
k P (Sk | m̃),

which is equivalent to maximize the following energy:

J (α) = ‖m̃‖2
H + σ 2

m̃

σ 2
ε

N∑
k=1

‖Sk − m̃(F k )‖2 .

λm̃ and σ 2
m̃ are automatically estimated using the maximum

likelihood principle (Yu et al., 2007) given the observed
sequence {Sk}. This is a key point because it is difficult to
determine these parameters by sequential trials. This difficulty
is amplified by the fact that the data are badly distributed:
many data points are present around the rotation centre
whereas far from this centre, data points are very sparse.
So, it clear there is not only the black hole problem, but also
a problem in the outer regions of the data where the slices
fan out far. However, this fact is now less severe since our
acquisition system is able to acquire near 300 hundred images
per turn. Furthermore, note that the norm of regularization
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‖m̃‖H is not the common Tikhonov regularization norm that
is not able, here, to deal with interpolation where the slices
fan out far, since at these locations the interpolated values
obtained with this norm tend to be abnormally small, (Yu et al.,
2008).

Reconstruction with deconvolution

Let m be the unknown volume not degraded by the PSF. Our
goal is to estimate m given the sequence {Sk}. Computing
3D image convolution using a PSF with spatial-varying
orientation is quite calculation-intensive. So, we use the
following scheme that allows to use only the PSF � associated
to the reference focal plane F.

For every positioned focal plane F k , let us define a 3D square
grid G k such that two faces are parallel to F k and are at
equal distance to F k . G k corresponds to the affine rotation
that applies F to F k . The node values of G k are obtained by
interpolation from those of G:

mk
r =

∑
j∈V k

r

Ak
j m j , ∀r ∈ G k

r ,

where Vk
r is a neighbourhood of r in G. In matrix form, one

write

mk = Ak m . (3)

Let H be the linear operator associated to the PSF �. With
respect to the frame G k , we consider the model

E[Sk ] = P H mk, (4)

where E denotes the mathematical expectation and Sk is the
random vector whose Sk is an occurrence. P is the section
operator P : R

d 3 −→ R
d 2

. Behind this formula is � k � m =
� � mk . Finally, we get

IE[Sk ] = PHAk m, (5)

which models the relationship between the data and the
unknown volume. Below, we will denote Hk .= PHAk .

Image deconvolution is an old problem for which a well-
known solution is given by the original Lucy–Richardson
algorithm (Richardson, 1972; Lucy, 1974). In this context,
this algorithm can be formalized in the general framework
of the EM algorithm (Dempster et al., 1977; Shepp & Vardi,
1982). In our case, m is defined over the grid G , which is larger
than the data supportF = {F k}all the more so the black hole is
large. Although our data are nonuniformly distributed over G,
they are well ordered through the image series. The application
of the EM algorithm is computer-intensive. Its convergence
can be accelerated by processing the data in ordered subsets
corresponding to the micro-rotated images within each EM
iteration (Hudson & Larkin, 1994).

Let us recall briefly the EM algorithm for deconvolution as
introduced in Shepp & Vardi (1982) in order to rewrite it with
the spatially- varying orientation of the PSF as defined above.

For every site i ∈ F and j ∈ G , let xi j be the number of photons
received at i and coming from j. The observations are then
given by Sk

i = ∑
j xi j and we assume that, given m j , xi j is the

occurrence of a Poisson random variableP(Hk
i j m j ). Under the

hypothesis of independence of the xi j , Sk
i is the occurrence of

the Poisson random variable P(
∑

j Hk
i j m j ).

From this model, we aim to find an estimate of m that
maximizes the likelihood of p(S|m). The general EM algorithm
(Dempster et al., 1977) works with the following expected log-
likelihood

Q (m|m(t)) = IE [log( p(X|m))|S, m(t)] , (6)

with respect to the conditional distribution p(x|S, m (t)) where
m (t) is a current estimate. Starting with a given initial estimate
m (0), at each iteration t, one proves that the likelihood
p(S|m(t)) increases. Following Shepp & Vardi (1982), by
derivating expression (6), we find the classical update formula
for a single voxel mr :

mr (t + 1) = mr (t)
1∑

k, j Hk
r , j

∑
k, j

Hk
r , j

Sk
j∑

l Hk
l, j ml (t)

.

In Lucy (1974), the term 1/
∑

k, j Hk
r , j is not present, and

in Shepp & Vardi (1982) the term H k
r, j does not depend on

k. In this formula, the update term that is applied to mr (t),
can be interpreted as follows. Since

∑
l Hk

l, j ml (t) is the current
estimation of the expectation E(Sk

j ), the update is driven by the
ratio between Sk

j and this estimated expectation. Furthermore,
on this formula we see the interpolation effect of this method.
When r corresponds to a point between two F k or to a point
in the black hole, the update term sums data Sk

j over a region
whose range is defined by the PSF support.

By denoting ./ the element-wise division and defining γ so
that γi = ∑

k, j Hk
i , j , we can use matrix notation for the update

step:

m(t + 1) = (m(t)./γ )
∑

k

(Hk )�
(

Sk ./(Hk m(t))
)

. (7)

Such a writing helps to implement the algorithm using the
FFT, and thus allows acceptable computational times.

Experimental results

Acquisition

The experiments shown below were performed on a sequence
of real micro-rotated images. Cultured SW13/20 living cells
(human tumour cell lines) tagged nuclear targeted green
fluorescent protein (lamin-A-GFP, a kind gift of Christopher
Hutchinson) were suspended in a DFC-3 chip (Evotec
Technologies/Perkin Elmer group, Germany) controlled by a
Cytocon400TM’s 4-phase high frequency generator (Evotec
Technologies). Individual cells were rotated around the x–y
axis and imaged using an Andor Revolution XD spinning disk
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Fig. 4. z-stack protocol.

confocal system equipped with an EM-CCD DV885 camera
(Andor Technology, Belfast Northern Ireland) mounted on an
inverted microscope (Axiovert 200M, Carl Zeiss, Germany).
The microscope is equipped with a 63× water immersion
objective with a numerical aperture (NA) 1.2. Fluorescence
acquisition used laser light excitation 488 nm and emission
band-pass filter 500–550 nm.

Furthermore, our spinning disk confocal microscope is
equipped with an objective piezo-drive. So, in addition to the
micro-rotation sequence, a so-called axial “through-stack”
image series (or “z-stack”) is recorded from the target samples
immobilized in suspension, (see Fig. 4). The piezo step in
through-stack axial imaging was 100 nm and xy resolution
was 127 nm. More details about z-stack acquisition can be
found in (Renaud et al., 2008).

The choice of the appropriated PSF is crucial. Several
approaches exist: computing the PSF from a theoretical
physical model (der Voort & Strasters, 1994), measuring
the PSF directly from the microscope, or estimating the PSF
from the images (Chalmond, 1991). We have experimented
with the two first approaches. To measure the point spread
function, 3D image stacks are acquired from subresolution
beads (0.17 μm, Molecular Probes) suspended in the same
medium used for live-cell imaging, and using the same
microscope configuration. The calculated axial resolution is
591 nm (microscope resolution calculator1) and the axial
sampling interval is 100 nm. Image data from five to eight
independent measurements were averaged and the PSF is
calculated using Huygens Pro software (Scientific Volume
Imaging, the Netherlands). The 3D image � is given from a z-
stack of this bead according to the protocol used for acquiring

1 http: //www.pfid.org/html/objcalc/?en

Fig. 5. Theoretical PSF and measured PSF.

cell images. The measured PSF � and the theoretical PSF are
depicted in Fig. 5.

Deconvolution-interpolation results

The experiments aim to test the quality of the results.
The first round of experiments compares the original data
(i.e., micro-rotated images obtained by the microscope) with
micro-rotated images in the reconstructed volume after
deconvolution, taken at the same position. Results are shown
in Fig. 6. The deconvolution process reveals details of the
cell, like swellings or folds of the cell membrane. In Fig. 7,
we also compare our results with the 3D reconstruction
obtained by interpolation as described in section ‘Interpolation
without deconvolution’. The advantage of our deconvolution
approach is twofold. First, more details are visible, which is
the expected result of the deconvolution. Second, as others
inversion methods, our approach has an interpolation effect
that is able to deal with the incomplete coverage, contrary
to the simple interpolation method. On some views of the left
column of Fig. 7 (see also Fig. 8(b)), a black hole is visible.
Such an artifact occurs when the focal plane turns around an
axis that is not included in it, and in this case a part of the
3D space—which has the shape of a cone—is not covered by
the moving plane. Since no data are captured in this area,
the simple interpolation approach replaces it by a black hole.
On the contrary, the deconvolution approach uses the PSF
to propagate information and find an estimate of the voxel
values at those locations (and thus fill the black hole). In our
experiment, the PSF has a size of 7 × 7 pixels in the xy-plane
whereas the maximal hole size is not greater than 5 (the angle
between the rotation axis and the focal plane is around 5 to
6◦). Therefore, during the deconvolution process, most often
one slice has interaction with its two neighbour slices what is
a favourable case for the success of the deconvolution.

A second round of experiments compares these two first
cell reconstructions with the cell obtained from a z-stack (see
Figs. 8–10). In the absence of ground true, z-stack data are the
main reference. Images show distribution of a nucleoskeletal
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Fig. 6. Comparison of original micro-rotated images (first column) with the corresponding micro-rotated images in the deconvolved volume (second
column). The xy microscope resolution is 127 nm. The difference of view between two successive rows corresponds to a quarter-turn of the focal plane.
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Fig. 7. Comparison of two reconstruction methods (The difference of view between two successive rows corresponds to a quarter-turn of the cross-section.
These orientations are those depicted in Fig. 8). First column: micro-rotated images are taken from the volume obtained by interpolation with Gaussian
kernels. Second column: micro-rotated images are taken from the volume obtained by the EM deconvolution process.

intermediate filament protein (lamin) distributed in the
periphery of the nuclear envelope. Micro-rotation volume
reconstruction shows 3D-image enhancement. Many details
are revealed using this imaging modality, particularly the
nuclear envelope invagination through the nucleus and
others that are not present on the z-stack volume (see for
example the element marked by a square). Figure 9 illustrates
the gain in isotropy for the micro-rotation imaging in
comparison with the z-stack imaging. In particular, some blob-

shape elements marked by an arrow are much more elongated
in the z-stack volume than in the micro-rotation one. It
could help quantifying the gain in resolution. Unfortunately,
matching these elements between two reconstructed volumes
is a hard task that cannot be done simply because matching
must be done in 3D. This problem is under study.

A third round of experiment is based on simulation. The
microscopic simulation workbench consists of tools to build
synthetic objects that realistically represent biological objects
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Fig. 7c. Continued.

Fig. 8. Volume rendering with ImageJ software (The lines on the slices depicted on the right side of the volume rendering, give its orientation). (a) z-stack
reconstruction, (b) MR reconstruction without deconvolution (the artefact due to the black hole is clearly apparent), (c) the same with deconvolution
(the black hole artefact has been removed).

and simulate the microscopic image formation of multiple
orientations of these. The simulator is a means to test some
aspects of the reconstruction methods by simulating different
kind of movement and degradation. Here we use this simulator
to study the impact of position errors on the reconstruction

results. The errors are the result of a trembling: every plane F k

is translated along the rotation axis according to a Gaussian
law N (0, τ2). Twelve values of τ have been chosen: τ q =
q/2, q = 1, . . . , 12, and for every τ q , nq simulations and
reconstructions have been performed. For every simulated
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Fig. 8. Continued.

data set, the quality of the reconstruction is measured by the
Peak-Signal-to-Noise-Ratio:

P SN Rl (τq ) = 20 log10

(
max m

‖m − m̂(q )
l ‖

)
, l = 1, . . . , nq ,

where m denoted the true volume and m̂(q )
l is the reconstructed

volume. Figure 11 shows the mean PSNR curve PSNR(τq ), q =

1, . . . , 12 and Figs. 12 and 13 show the reconstructed volume
after deconvolution for τ = 2.5, in comparison to the true
volume m.

Let us briefly speak about some others experiments we have
done. Deconvolution is typically an inverse problem. In such a
context, it is well known that introducing prior knowledge on
the unknown parameters m is needed to stabilize and improve
the solution (cf. Chalmond, 2003; Chan & Shen, 2005, among
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Fig. 9. xz slice from the reconstructed volume (optical axis is vertical): (a)
z-stack volume, (b) micro-rotation volume.

many others). Naturally, we have also searched to integrate
a regularization component in our deconvolution process. As
in section ‘Interpolation without deconvolution’, it consists to
replace the likelihood p(x|m) in (6) by the penalized likelihood
p(x|m) p(m) where the distribution p(m) translates our prior
knowledge. From Geman & McLure (1985), many prior
distributions have been studied (Chalmond, 1989; Hebert &
Lehay, 1989; Green, 1990; Lange, 1990; Charbonnier et al.,
1997; De Pierro & Yamagishi, 2001; Gravier & Yang, 2005;
Mair & Zahnen, 2006). We have tested several regularization
terms and in particularly the Total Variation term as used
for confocal image deconvolution in Dey et al., (2006). The
role of this prior is to recover a smooth solution with sharp
edges, but in the light of the experimental results, we found
the counterintuitive result whereby regularization as total
variation does not yield significant improvement over the
micro-rotation deconvolution for real data.

Fig. 10. Volume rendering (optical axis is vertical): (a) z-stack volume,
(b) micro-rotation volume.

Fig. 11. PSNR curve with regard to the standard deviation of the position
errors.

Conclusion

Deconvolution of micro-rotated image series, as presented
here, yields a striking improvement in data quality including
a strong reduction in two-dimensional out-of-focus blur.
This is due to efficient 3D light reconstruction whereby

C© 2009 The Authors
Journal compilation C© 2009 The Royal Microscopical Society, Journal of Microscopy, 233, 404–416



4 1 4 B . L E S A U X E T A L .

Fig. 12. Sagittal and transaxial views for simulated data. (a) True volume. (b) Reconstructed volume without position error. (c) Reconstructed volume
with position errors (τ = 2.5).
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Fig. 13. Volume rendering for simulated data. (a) True volume. (b)
Reconstructed volume without position error. (c) Reconstructed volume
with position errors (τ = 2.5).

the PSF geometry and pitch orientation guides accurate 3D
reassignment of out-of-focus light emanating from fluorescent
features of interest. A most unexpected observation, and
apparently peculiar to this novel imaging modality is the
remarkable efficacy of light reconstruction by deconvolution.
We show that in the case where information is lost in
micro-rotation feature reconstruction due mainly to
incomplete sampling near the rotation axis (i.e., the black-
hole artefact) that such information is fully recovered by the

Fig. 13. Continued.

deconvolution process. This interpolation effect presumably
arises due to the rotating PSF, and to our knowledge has yet
to be characterized. Our results suggest thatdeconvolution of
micro-rotation image series open some exciting new avenues
for further analyses, ultimately laying the way towards
establishing an enhanced resolution 3D light microscopy.
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