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Onera - The French Aerospace Lab
F-91761 Palaiseau, France

jonathan.israel@onera.fr, bertrand.le saux@onera.fr

ABSTRACT

We describe an interactive framework for man-made structure
classification. Our system is able to help an image analyst to
define a query that is adapted to various image and geographic
contexts. It offers a GIS-like interface for visually selecting
the training region samples and a fast and efficient sample de-
scription by histogram of oriented gradients and local binary
patterns. To learn a discrimination rule in this feature space,
our system relies on the online gradient-boost learning algo-
rithm for which we defined a new family of loss functions.
We chose non-convex loss-functions in order to be robust to
mislabelling and proposed a generic way to incorporate prior
information about the training data. We show it achieves bet-
ter performances than other state-of-the-art machine-learning
methods on various man-structure detection problems.

Index Terms— Remote sensing, Machine learning,
Boosting, Image classification, Object detection

1. INTRODUCTION

More and more satellite images are being produced, at higher
and higher resolutions. The paradox is that while lots of in-
formation can now be extracted, the manual annotation of an
image is so time-consuming that it prevents the deployment
of such indexation schemes. Automatic processing such as
segmentation and classification have been an effective way to
solving this contradiction for years, but today’s level of detail
makes it more complicated, due to the great variety of possi-
ble visual concepts. The interactive exploration of the image
is a promising way to solving this problem [1, 2, 3]. The user
defines iteratively what is interesting in the image, and the
system searches for areas that look similar to the selected ar-
eas. This allows us to adapt to various image types (sensor,
resolution, etc.) and various geographic contexts (man-made
structures do not look the same depending on which place on
Earth you are).

The remainder of the paper is structured as follows. We
present our interactive approach for defining the samples used
for training in section 2. Features are extracted from these
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samples to represent the image content (cf. section 3). Sec-
tion 4 details our boosting-inspired method to perfom online
classification. Experimental results on real data are shown in
section 5 followed by discussion in section 6.

2. INTERACTIVE INTERFACE FOR SAMPLE AND
FEATURE EXTRACTION

Fig. 1. Interactive selection of regions of interest and clutter
zones.

Image analysts are usually expert-users of Geographic In-
formations Systems (GIS) and exploit the geographic con-
text of the image. The system in [1] keeps the complete
image context visible, then learns the searched concept by
using only a few selected pixels. On the contrary, Content-
Based-Image-Retrieval-inspired systems for search by exam-
ple (like PicSOM [2] or VisiMine [4]) segment images to
small patches and display a ranked list of patches that users
have to tag as good or bad. Our approach tries to mix the
best of both worlds. First the user draws regions of interest
and non-interest over the image using our GIS-like system
named ParadisSAT (cf. Fig. 1). Secondly, the system extracts
small overlapping patches from these regions, thus building
the training set. This training set is then used to learn the dis-
crimination rule of the classification method, which is finally
applied locally on every patch of the whole image.

New regions of both types can be added in further inter-
actions to iteratively refine the result. The online classifica-



tion method we present in section 4 only modifies the classi-
fication rule according to the new provided samples, without
repeating the whole training (cf. section 5, Fig. 4). Two key-
points need to be considered:

Mislabelled data: The interactive definition of the re-
gions is sensitive. By drawing a region with the wrong label
or selecting a larger-than-necessary area, the user may intro-
duce mislabelled samples in the training data.

Unbalanced data: In lots of man-made-structure search
use-cases, it is easier to find negative samples than positive
ones. Thus, the user introduces a bias in the training set that
eventually leads to misclassfications.

3. FEATURE EXTRACTION FOR MAN-MADE
STRUCTURES

To feed the classification method, we investigated several
state-of-the-art features [5] commonly used for man-made
structure classification to represent the patches: Histograms
of Oriented Gradients (HOG), Local Binary Patterns (LBP),
a right angle / Line Segment Detector (LSD), edge density
and SIFT. To have a good speed-performance tradeoff, we
selected the fastest ones to ensure that the system has a short
response time (cf. Table 1), ie. a combination of HOG and
LBP. All experiments of section 5 are run with these features.

4. ONLINE GRADIENT-BOOSTING IN SATELLITE
IMAGES

Boosting is a powerful and computationally efficient machine-
learning approach. It aims at building a good (strong) meta-
classifier from a set of weak classifiers. Several variants of
the initial adaboost algorithm have been proposed, including
the online boosting used in [7] and a more generic family
of boosting methods named online gradient-boost [13] that
builds a strong classifier F by minimizing the empirical loss
defined by:

L(F ) =

N∑
n=1

l(ynF (xn)) (1)

where l(.) is a loss function (for example exp(−x), cf.
[13] for a full list) and X = {(x1, y1), · · · , (xL, yL), xi ∈
RD, yi ∈ {+1,−1}} is the training set of feature vectors and
their associated labels.

Using online gradient-boost, we are able to propose a so-
lution for each issue identified in section 2:

Mislabelled data: Boosting algorithms with a convex
loss function (including the standard adaboost) are particu-
larly sensitive to noise [14]. Based on the comparison of
various loss functions on a man-made structure classification
problem (cf. section 5), we favour the non-convex DoomII
and Savage (the latter for really noisy data only) functions.

Unbalanced data: We propose a generic modification to
the gradient-boost algorithm that consists of introducing the

prior probabilities of the training sets in the loss function l(.):

l(x)← l(x)

p(y)
(2)

Priors are estimated using the number of positive and neg-
ative samples, n+ and n−, by p(y = 1) = n+

n++n−
and

p(y = −1) = n−
n++n−

. Consequently, the weight formulas
of online gradient-boost in [13]-Algorithm 1 are modified in
the following manner:

wn = −l′(0)/p(y = yn) initially (3)
wn = −l′(yn ∗ F (xn))/p(y = yn) for update (4)

5. EXPERIMENTS AND RESULTS

5.1. Dealing with the mislabelled data issue

Fig. 2. Patch examples for the ground-truth dataset: man-
made structures (upper row) vs. clutter samples (lower row).

We build a ground-truth dataset by extracting 50x50
patches from a 2000x2000 QuickBird image (60cm resolu-
tion) (cf. Fig. 2). It contains 615 positive samples (with
houses and roads) and 1281 negative samples (woods and
mountains). We compare our modified online gradient-boost
(with only one iteration) with 2 state-of-the-art approaches:
the standard adaboost (own implementation) and the support-
vector machine (SVM) with a radial-basis-function kernel
(libsvm implementation). Test error rates are computed using
cross-validation such that reject and accept error rates are
equal, by averaging the results on 10 runs. We obtain better
classification rates with boosting approaches than with the
SVM (cf. Table 2).

Adaboost Online Gradient-Boost SVM with RBF kernel
97.80% 98.30% 83.48%

Table 2. Equal Error Rates (EER) for various man-made
structure classification methods in QuickBird images.

The capacity to handle mislabelled data of the various loss
functions is compared by partially flipping the class of the
ground-truth data. It appears on Fig. 3 that online gradient-
boost with a well-chosen function is better than classic ad-
aboost: with a limited noise DoomII has the highest perfor-
mance, while with an increased mislabelling level (> 20% of
mislabelled input) Savage performs better.



Feature Feature Remote-sensing Computation speed
reference reference (s/MP)

Histograms of Oriented Gradients (HOG) [6] [7], [2] 1.02
Local Binary Patterns (LBP) [8] [7], [2] 2.39
Right-Angle Detector (LSD) [9] [10] 6.22
Edge Density Canny filter [11] 5.34
SIFT Density [12] [5], [10] 10.25

Table 1. State-of-the-art features for man-made structure classification and associated computation times.

Fig. 3. Influence of training-data labelling errors on performances of online gradient-boost with various loss functions.

5.2. Dealing with the unbalanced training data issue

To shed light on the training data balance issue, we use the
ground-level-shot image dataset collected by Kumar and
Hebert [15], which is highly unbalanced since there are 7 to
10 times more natural-object patches than structured ones.
We compare the original loss functions and the prior-based
modified loss functions. At the first iteration, prior-based
DoomII catches 10 times more structured patches than the
standard loss function: 887 vs. 81 patches. During the suc-
cessive interactions, the user adds more natural-object regions
so that the classification rate improves.

5.3. Real case interactive classification

Fig. 4 shows an interactive man-made structure classification
on a QuickBird image (60-cm resolution) starting from train-
ing data in Fig. 1. At interaction #2, two more areas of natural
structures are added. Only two interactions yield a classifica-
tion with only a few false remaining alarms, corresponding
mainly to roads.

6. CONCLUSION

We presented an interactive framework for man-made struc-
ture detection. The key contributions are an intuitive sce-
nario to gather training data from an image analyst, an effi-
cient state-of-the-art feature extraction, and a redesign of the
online boosting algorithm to cope with the problems raised
by this context. Specifically, we assessed the suitability of
online gradient-boosting with non-convex loss-functions and
we proposed a generic way to incorporate prior information
about the training data set into the algorithm. In the future we
aim to carry out a more thorough study of the feature selec-
tion mechanism of boosting to be able to distinguish between
various classes of man-made structures.
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