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Abstract—In this work we propose a new method for vehicle
detection in very high resolution aerial images. Our model is
based on a mixture of filters which capture the visual appearance
of the object of interest. Each filter is discriminatively trained in
order to model the implicit subcategories in the training dataset.
We use an iterative hard-negative mining procedure to focus the
detector on difficult samples. We assess our approach on several
large datasets and show it tackles efficiently major problems in
remote sensing such as orientation change and data size.

I. INTRODUCTION AND RELATED WORKS

Automatic analysis of aerial images is an important research
topic with direct application to many high-level tasks such
as scene interpretation or autonomous visual navigation. A
necessary step to achieve this is to be able to localize and
recognize the objects in an image. Object detection in aerial
scene has some specificities compared to natural scenes as
in the Pascal VOC challenge[1]. Images taken from an aerial
aircraft map very large areas which means images are very
large, usually greater than 3000×3000, and contain thousands
of objects. Another particularity is the view of the objects: they
are seen from the top, vary in orientation and can be occluded.

Up to now, the resolution of available aerial images was too
low to use efficiently popular methods from computer vision
widely used for object detection [2], [3]. However, recently
more and more very high resolution datasets (greater than
10cm/pixels) of aerial images have been becoming available.
With the availability of such very high resolution aerial
images, object detection methods are becoming increasingly
demanded. In [4] the authors use the Deformable Parts-based
Model (DPM) of [2] to classify urban areas in the image. [5]
use discriminative autoencoders to learn a representation of
the small targets in aerial images (mainly vehicles) and detect
them. [6] perform vehicles detection from an Unmanned Aerial
Vehicle (UAV) view flying at low altitude.

In this paper we propose an efficient object detector for
aerial images based on the modified Histogram of Oriented
Gradient (HOG) feature of [2] and the modeling of sub-
categories [7], [8]. Our framework for object detection in
aerial images is based on a mixture of discriminatively trained
templates. It models automatically subcategories that can exist
in an object category and a template is then learned for each
of the subcategories. Figure 1 shows an example of a mixture
of templates for car category. The final detector is the mixture

of the templates of each subcategory, called Discriminatively
trained Model Mixture (DtMM) in the following.

Fig. 1: On the left: a representative example from the subcate-
gory. On the right: the HOG filter learned using our algorithm.

II. DISCRIMINATIVELY TRAINED OBJECT DETECTOR

We propose an object detector framework based on two
main steps. First we propose to disambiguate the subcategories
that exists in an object category using a clustering method.
Second we trained for each subcategory a template filter based
on the popular HOG feature using a hard mining procedure.

A. Subcategory modeling

We employ a discriminative classifier to train a filter which
will be used as a template to find object in an image. The learn-
ing process implies to gather positive and negative examples
corresponding to a specific category from a dataset. Categories
can contain thousands of objects and finding a global category
representation is quite challenging. We propose a method to
model the variation of appearance in a category.

In fact, trying to model a whole category of objects with a
single rigid template is a very hard task. Objects in the dataset
can vary in orientation, appearance or scale. We tackle this
issue using an unsupervised framework to split the training
samples into several clusters wich are visually alike as shown
in fig. 2. Moreover training a discriminative template on each
cluster instead of all the training samples results in an easier
classification problem.

Several criteria can be used to find visually homogeneous
clusters. The vehicles in aerial images are very similar but
their color, orientation and size can vary a lot. The criterion
we use to model the subcategories of the cars is the aspect-
ratio. The main benefits of this criterion is to model the
orientation of the training samples in the dataset. Training
several clusters instead of rotating the template to match every
orientation of the object allows to find several sizes for the
sliding window wich fit the object of interest. The size of



Fig. 2: For each sample from the dataset, we compute the
aspect-ratio then we use GMM in order to cluster the samples.

the sliding window and more importantly the aspect-ratio of
the window is critical to match the template with an object
in the image. We use the logarithm on the aspect-ratio as a
feature to roughly estimate the orientation of the vehicle in
the image (horizontal, vertical or diagonal). Then we learn a
Gaussian Mixture Model (GMM) using this feature and cluster
the training samples using the GMM. For each subcategory we
compute the size of the template based on the median size of
the samples in the cluster.

B. Filter training

We use template matching to perform object detection in
the images. For this task the template must be robust to
changes of appearance and orientation of the objects. The
templates are trained using annotated samples from a dataset.
The objects are described using the popular HOG feature of
[2] which is a modified version of [3] that includes texture.
This feature vector offers a great combination of discriminative
power and fast computing [9]. In order to ensure the robustness
of the detector, the template are trained using hard negative
mining. We first train a template from the annotation data and
randomly sampled negative examples. We perform detection
on the training set to extract the areas classified as the targeted
object and train again the template using the miss-classified
negative samples (hard negatives) in addition to the previous
training set. We repeat this operation until the detection score
on the validation test converges. The details of the training
algorithm are shown in Algorithm 1.

C. Detection

We handle the object detection task as a template matching
problem. We perform the computation in the HOG feature
space to fasten the detection of the objects. A property of the
HOG is that it can be seen as a 2D-spatial filter so instead
of extracting patches one by one from the image and com-
puting the feature individually for each patch, we transform
the whole image in its HOG representation. Performing the
sliding window in the HOG space instead of the RGB space
reduces the spatial extent of the image but each location is
now described by a powerful descriptor instead of the RGB
value of the pixels. We use the precise template trained on
each subcategory to produce a heatmap. The hot points of
the heatmap are the areas of the image where the detector
estimates that there are objects. We produce the heatmap using

Algorithm 1 Training of the mixture of filters of orientated
gradients

1: Selection of positifs examples in annotations −→
{(Oi, yi = +1)}

2: Cluster {(Oi, yi = +1)} with mixture of Gaussian models
−→ sub-categories S(k) = {(O(k)

i , yi = +1)}
3: for all cateroy S(k): do
4: Compute the size of the filter (median of the heights

and widths in S(k))
5: Select random negatifs samples from the dataset

with overlap smaller than 50% with positifs samples
{(Oi, yi = +1)})
−→ {(Oi, yi = −1)}

6: Resize {(Oi, yi = +1)} to the size of the filter
7: Transform {(O(k)

i , yi)} with HOG feature
−→ {(x(k)i , yi)}

8: Train the SVM classifier on H0 = {(x(k)i , yi = +1)}∪
{(xi, yi = −1)}
−→ β(k): the HOG filters model the subcategory S(k)

9: for hard-mining ∀m ≤M : do
10: Classifier les images par f (k)(x) = β(k) · x pour

extraire de nouveaux exemples ngatifs “difficiles”
−→ Hm+1 = {(x′i, y′i = −1)} ∪Hm

11: Classify the images with f (k)(x) = β(k) · x in order
to find the new “hard samples”
−→ Hm+1 = {(x′i, y′i = −1)} ∪Hm

12: Re-train on Hm+1

13: end for
14: end for
15: Out: −→ mixture of models {β(k)}

the fast Normalized Cross-Correlation (NCC) score from [10]
defined as:

Sd(o) =

∑
x′,y′ t(x′, y′)Ih(x+ x′, y + y′)√∑
x′,y′ t(x′, y′)2Ih(x+ x′, y + y′)2

(1)

The NCC return a correlation score between the template
and a position of the sliding window in the image. The
heatmaps of correlations can be compared between the tem-
plates in the mixture. The final result of detection is the
fusion of the heatmaps of each template. We fuse the heatmap
by using the Non-Maximum Suppression (NMS) algorithm
describe in [11]. For a set of overlapping windows extracted
from all the heatmaps, the algorithm keeps only the window
with the maximal score, the one with the greatest confidence.

This procedure drastically reduces the number of candidate
windows and increases the precision of the detector. Figure 3
shows the heatmaps produced using the NCC alongside with
the original image for each of the templates in the mixture.
The scale issue is handled by resizing the test image before
applying the HOG transformation.
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Fig. 3: (a) shows final detection on the Christchurch dataset area, while (b) to (f) are heatmaps produced by correlation of
each subcategory template with the image. 5 clusters were found to optimally model the “car” class: (b) and (c) are templates
for cars with horizontal orientation, (d) is the vertical car template and (e) and (f) are diagonal templates with different angles.
Heatmaps are then combined by NMS. This avoids a bad impact from templates which produce a lots of false alarms such as
(e). On the top of each heatmap we show the mean representative of the subcategory

III. EXPERIMENTS

We test the object detector on two different datasets: one
provided by the New Zealand Aerial Mapping1 and the other
provided by the IEEE Geoscience and Remote Sensing Society
Data Fusion Contest 2015, called Zeebrugge in the follow-
ing. The images have different resolutions (10 cm/pixel for
the Christchurch dataset and 5 cm/pixel for the Zeebrugge
dataset).

A. Christchurch dataset

The Christchurch Dataset2 consists of 4 images whose
resolution is 10cm/pixels and size is around 5000 × 4000
pixels. 2 images are used for the training set, 1 for the
validation set (1703 cars) and 1 for the test set (654 cars).

We test our method in the context of object detection,
especially we are interested in car detection in large image.
For this task we must define a measure of good detection.
We consider an hypothesis bounding box for a car as a good
detection if its overlap score is over 0.5. The overlap score is
defined by:

1http://nzam.co.nz
2Images are freely available on http://www.linz.govt.nz/land/maps/ Source:

Land Information New Zealand (LINZ) and licensed by LINZ for re-use under
the Creative Commons Attribution 3.0 New Zealand licence. Annotations are
available on demand

area(A ∪B)

area(A ∩B)
(2)

If several hypothesis have an overlap with an object greater
than 0.5 we only keep the hypothesis with the greatest score
and the other are all marked as false positive. Figure 4 shows
the precision-recall curves obtained with the DtMM method.
At the time being we do not provide a method to automatically
find the good number of models to maximize the average-
precision score. In order to find that number of models we
vary manually the number of cluster in our method.

We show the results on an area of Christchurch in fig. 3(a).
We vary the number of clusters in the model then we perform
detection on the test dataset. We compute the precision-recall
curves for each detectors to find the optimal number of clusters
for this dataset. Our framework is compared with the object
detector proposed by [3].

B. Zeebrugge Dataset

The Zeebrugge dataset consists of 7 images the resolution
of which is 5cm/pixels and size is 10000× 10000 pixels. We
use a subset of 3 images to train the methods and 2 images to
test. We compare the DtMM method with several methods in
the context of pixel-wise classification. Two metrics are used
to evaluate the classifiers, the f1-score and the area under the
precision-recall curve (AUC). We compare our method with
the methods tested in [12]:

http://nzam.co.nz


Fig. 4: Precision-recall curves for DtMM method. Contrary
to intuition, the average-precision score do not increase with
the number of model, for example 3 models is better than 4
models and the best results are achieved using 5 models.

• RGB/SVM: A RBF Support Vector Machines (SVM) is
trained on the superpixels [13] extracted from the image

• HOG32/SVM: Patches of size 32 × 32 are indexed by
HOGs then a RBF SVM is trained on the patches

• RGB VGG/SVM: Features are learned on patches of
size 231 × 231 using the fast network [14] of 8 layers
(including 5 convolutional layers) cut at layer #7. A SVM
is trained on the output feature.

• Overfeat/SVM: Same as before, except we use the over-
feat implementation of 6 convolutional layers network
and no drop-out.

The results are presented in table I. The results show that
for objects with well defined boundaries, approaches able to
model the entire object (and not only the pixels or a small
patch information) outperform state of the art methods. Even
in the context of pixel-wise classification, taking into account
the entire object leads to a performance gain.

TABLE I: Pixel-wise classification on the Zeebrugge dataset.

Method f1-score AUC
RGB+SVM 24.02 13.44
HOG32+SVM 30.24 19.73
VGG+SVM 31.46 25.71
Overfeat+SVM 36.03 30.6
DtMM 48.46 35.29

We show an example of the bounding boxes generated with
our method for vehicle detection in fig. 5.

IV. CONCLUSION

We presented a framework for vehicle detection in very high
resolution images using a mixture of discriminatively trained
models. Each model in the mixture corresponds to a visual
subset of the cars in the training dataset. Each model is trained
using the HOG feature with hard mining of negative examples.
This approach shows great results in difficult urban areas and
can be used at multiple scales.

Fig. 5: Detection of vehicles on a neighboorhood of Zee-
brugge. The detector is able to find cars all around the
roundabout at various orientations.
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