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ABSTRACT

Data from satellite and aerial images are now widely used
by everyone. These images contain information from differ-
ent frequency bands that help to characterize areas of interest.
In this paper we study a framework for object detection in
aerial image based on discriminatively-trained models trained
on multimodal data. Specifically, we investigate a method to
merge outputs of large margin classifiers trained on images
from different sensors: we use the ranking ability of these
classifiers to learn a probabilistic model.

1. INTRODUCTION

Nowadays state of the art detection methods in remote sensing
are widely inspired by successful computer vision algorithms.
Detectors such as Support Vector Machines (SVMs) (trained
on Histogram of Oriented Gradients - HOGs - for example)
have shown good results in object detection and are now ex-
tensively used in remote sensing. More recent methods like
Discriminatively-trained Part Models (DPMs) [1] have also
led to good results in remote sensing [2].

This paper investigates the various concepts behind the
DPMs and propose an adapted DPM that handle multi-modal
data. We show that DPMs can advantageously be used with
descriptors that suit the sensor used to generate the data and
propose an approach for combining DPMs trained over var-
ious sensors. It is organized as follows. In Sec. 2 we shed
light on the components of the DPM framework and explain

the multi-modal approach. Results are presented in Sec. 3 and
analyzed in Sec. 4

2. DETECTION WITH
DISCRIMINATIVELY-TRAINED PART MODELS

The available implementation of deformable part models was
developed for the pascal voc challenge and includes specific
tunings that led to successful results on this benchmark. How-
ever satellite imagery has peculiarities (such has image size
and level of details) that has to be taken into account. In the
following we identify the key parameters of DPMs and pro-
pose an adaptation of this algorithm for remote sensing.

2.1. Model

A DPM is a model which is composed of several compo-
nents. The first component, the root filter F0, captures the
global appearance of the object and the set of N movable
parts {Pi|i = 1, . . . , n}, calculated at twice the resolution
of the root filter, capture finer details of the object (Fig. 1).
The model is composed by a set M of parts models, called a
mixture of models, the role of which is to handle the variation
of poses and orientations of the objects. Finally, this model
is used to train a linear Support Vector Machine (SVM) and
thus generating a discriminative classifier.



Fig. 1: Deformable Part Model synoptic: the Root filter cap-
tures the global appearance of the objects while Part filters get
finer details at twice the resolution.

2.2. Key Mechanisms

As the name suggests, DPMs describe objects as a set of parts
that can have various positions with respect to the object:
it allows flexibility in the object representation, with bene-
fit for dealing with non-rigid objects, occlusions or viewpoint
changes. Keys mechanisms are the following

• Use of a mixture of models in order to model the varia-
tion in appearance and orientation of the samples. A re-
cent paper investigates the importance the respective
importance of deformations and mixture of models in
DPMs [3].

• DPMs benefit from an appearance model based on a
multiscale representation and pyramid matching as in
[4].

• The HOG feature used in [1] is highly optimized in
terms of image description and includes texture infor-
mation.

2.3. Our Approach

2.3.1. Finding Subcategories

The issue of finding relevant subcategories in training data in
order to learn a more accurate classifier is a subject of active
research. There are methods based on latent membership to
a cluster [1, 3], use of a novel measure of visual similarity
[5] or decorrelated features [6]. Our approach is based on a
2-step process. First we use the aspect ratio of the positive
training data to find a first set of clusters then we refine the
clusters with appearance based clustering. The clusters based
on the aspect ratio are found using the MeanShift algorithm

[7] on the log of the aspect ratio. In remote sensing, the as-
pect ratio gives a good approximation of the object orienta-
tion. However to find relevant visual subcategories, a second
step is needed. We use spectral clustering [8] on the decorre-
lated features of [6].

2.3.2. Ranking-Based Calibration

Our approach is based on the assumption that the outputs of
the learning algorithm can be used to rank hypothesis. With
this assumption the outputs are transformed into probabilities
and theses probabilities are used compare mixture of classi-
fiers learned on multimodal data. There are several methods
to transform outputs of a large margin classifiers such as SVM
into probabilities among which the most popular approach is
Platt scaling [9] to estimate the probability.

The goal of this method is to map the scores of a classi-
fier into probabilities by estimating the posterior probability
P (y = 1|wTx). In [9] the author shows that the densities of
the outputs of a large margin classifier can be modeled by a
sigmoid function:

P (y = 1|wTx) =
1

1 + exp(α∗(wTx) + β∗)
(1)

The parameters of the sigmoid are found by minimizing
the negative log likelihood of the training data

α∗, β∗ = arg
α,β

min−
∑
i

ti log(pi) + (1− ti) log(1− pi)

(2)

ti =
yi + 1

2
(3)

pi =
1

1 + exp(αwTxi + β)
(4)

Once the classifiers are well calibrated they are applied on
the corresponding modality (visible or LWIR). They return a
set of hypothetical detections defined by a probability p and a
position (x, y).

At this point there is a lot of redundant detection from the
differents modality. We use the Non Maximum Suppression
(NMS) to fuse multimodal detections and discards redundant
detections. The NMS allows to keep the detection with the
highest score and discard all detections that overlap this de-



Fig. 2: Illustration of the annotated dataset for object detec-
tion task. In green the tree category, in blue the car category
and in maroon the house category.

tection. The overlap is computed as following for two detec-
tions Wi and Wj :

overlap(Wi,Wj) =
Wi

∪
Wj

Wi

∩
Wj

(5)

3. EXPERIMENTS

3.1. Dataset

The data we used are taken from the grss dfc 2014 [10], it
consists on two datasets acquired at different spectral ranges
and spatial resolutions: a coarser-resolution long-wave in-
frared (LWIR, thermal infrared) hyperspectral data set and
fine-resolution data acquired in the visible (VIS) wavelength
range. The former is acquired by an 84-channel imager that
covers the wavelengths between 7.8 to 11.5 µm with approx-
imately 1-m spatial resolution. The latter is a series of color
images acquired during separate flight-lines with approxi-
mately 20-cm spatial resolution. The two data sources cover
an urban area near Thetford Mines in Qubec, Canada.

We extract from this dataset 273 cars, 235 trees and 226

houses for the training set. In the test image we extract 196
cars, 296 trees and 194 houses. Models are trained and cal-
ibrated on the training set then they are evaluated on the test
image. An illustration of the annotated database is shown in
Fig. 2

3.2. Calibration

The calibration of the classifier is evaluated with the reliabil-
ity diagram of [11]. This diagram shows how well the empir-
ical distribution of the probabilities fit the learned model. The
more the empirical distribution is close to the curve the bet-
ter the probabilities are estimated. Fig. 3 shows the reliability
diagram for two differents classifiers learned separately.

(a)

(b)

Fig. 3: Diagram of reliability for classifiers calibrated using
Platt calibration [9]. The more the dots fit the blue curve the
better the probabilities are estimate. The model in Fig. 3b
gives more reliable probabilities than the model evaluate in
Fig. 3a.

3.3. Multimodal

In this section we evaluate the framework describe in 2.3. The
detections from the optical and the LWIR images are fused
based on the score of detection for each images. Precision-
recall curves that evaluate the detectors are shown in Fig. 4.

4. CONCLUSION

We studied a framework that use classifiers learned on mul-
timodal data to perform object detection. We show that a



Fig. 4: Precision-recall curves for a tree detector. The solid
blue curve evaluates the detector on the optical/visible image,
the dash green curve evaluate the detector on the LWIR im-
age and finally the dotted red curve evaluate the fusion of the
previous classifier. The overall metric used to evaluate the
detectors is the average precision.

proper calibration of the classifiers allows to compare outputs
of these classifiers even if they are learned on heterogeneous
data. We use this property to fuse detections hypothesis pro-
posed by the mixture of classifiers and find out that the fusion
increases the performances of the object detector.
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