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Scene understanding ?

Machine Learning Models for Scene Understanding [T2]
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Scene understanding ?

General scene understanding: 

object detection, semantic labeling, 3D structure, denoising, 
motion and action recognition, captioning, etc.

→ Build functions able to estimate semantics and geometry of a scene 

SUN-RGBD: 
http://rgbd.cs.princeton.edu/

Varcity project, ETHZ
http://www.varcity.eu/
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→ Build functions able to estimate semantics and geometry of a scene 

Labeling pixels Labeling 3D pointsEstimating depth

Scene understanding ?
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Outline

In this talk:

 Why using conv. nets for semantic mapping ?
 Dense conv. nets for semantic segmentation
 Fusion of heterogeneous data
 Joint learning with open-source cartography
 Multi-temporal analysis
 Hyperspectral data classification

 Distance-transform regression for semantic labeling
 Losses for single-image depth prediction
 Robotic exploration 

 3D point-cloud semantic mapping with SnapNet
 Urban mapping

2D

3D

From above

Front view

Point cloud
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Point-cloud semantic labeling

Multisource info (image/DSM) is used in the best approaches 

ISPRS 2D Semantic Labeling Benchmark 
http://www2.isprs.org/commissions/comm3/wg4/tests.html

T2-scene-understanding.mp4
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Benchmarking classification

(or : why using conv. nets for semantic mapping ?)

(with Adrien Lagrange, Anne Beaupère, Alexandre Boulch, Adrien Chan-
Hon-Tong, Stéphane Herbin, Hicham Randrianarivo, Marin Ferecatu)
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Classification algorithms in competition

Expert rules and

indices (NDVI, ...)

Handcrafted features

 + SVM (Superpixels,

 HOGs, normals...)

Raw data 

+ SVM

Conv. Neural 
Nets

Object-based

Detectors (DPMs)

Data Fusion Contest 2015 : VHR images, DSM, 8-class semantic reference

Benchmark today available on: http://dase.grss-ieee.org/
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Results : classification measures

Processing of Extremely High-Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE 
GRSS Data Fusion Contest–Part A: 2-D Contest, Campos-Taberner et al., JSTARS’2016
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Results : classification map #6

http://www2.isprs.org/commissions/comm3/wg4/tests.html
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Dense conv. nets  for semantic segmentation

(with Nicolas Audebert and Sébastien Lefèvre)
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Semantic Segmentation

Classification: 1 image → 1 label

Segmentation: 1 pixel → 1 label

Image = structured pixel ensemble

 

Network architecture :

Fully Convolutional Network 

[Long et al. 2015]
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Fully convolutional networks

Standard AlexNet

Fully-convolutional AlexNet
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Semantic Segmentation

SegNet : A deep convolutional Encoder-Decoder architecture for Image

Segmentation. Badrinarayanan, V., Kendall, A., Cipolla, R., TPAMI 2016

And today : U-net [Ronneberger et al., 2015], Hourglass [Newell et al., 2016]...
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SegNet for semantic segmentation of EO data

ISPRS / Vaihingen
IR/R/G 10cm/pixel

Ground-truth SegNet

F1 road F1 building F1 low. Veg. F1 trees F1 cars Overall acc.
 93% 95% 84%    82%    81%      89.1%
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SegNet compared

ISPRS / Vaihingen
IR/R/G 10cm/pixel

CNN+RF+CRF SegNetFCN

Summary:
 Encoder-decoder frameworks result in precise maps
 Very good overall accuracy
 Precise segmentation of small objects (vehicles…)
 Pre-trained models available in the Caffe Model Zoo / in pytorch
 Check out: https://github.com/nshaud/DeepNetsForEO

Semantic segmentation of Earth-observation data using multimodal and multi-scale deep 
networks, Nicolas Audebert, Bertrand Le Saux, Sébastien Lefèvre, ACCV’2016
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Segment-before-detect

 Segmentation is precise enough to detect vehicles by simple 
connected component extraction

 Allows study of vehicle repartition and density in cities

Segment-before-detect: Vehicle Detection and Classification through Semantic Segmentation of 
Aerial Images, Nicolas Audebert, Bertrand Le Saux, Sébastien Lefèvre, Remote Sensing’2017
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Fusion of heterogeneous data:

residual correction

(with Nicolas Audebert and Sébastien Lefèvre)
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Fusion with residual correction

How can we use complementary data such as optical IR/R/G and LiDAR (DSM 
/ nDSM) together ?
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Fusion with residual correction

Dual stream with

naive fusion (averaging the 2 predictions) vs. Learning-based fusion
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Fusion with residual correction

 Dual-stream: RGB and Composite (DSM, NDSM, NDVI)
 Learning-based fusion based on residual correction
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Fusion with residual correction

 Inspired by residual learning [He et al., 2015]
 Learn to correct 2nd-order prediction error

Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks, Nicolas 
Audebert, Bertrand Le Saux, Sébastien Lefèvre, ACCV’2016; ISPRS J. PHOTO’2018.
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IR/R/G Groundtruth Fused predictionsIR/R/G prediction

Residual correction results
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Joint learning with additional cartography

(with Nicolas Audebert and Sébastien Lefèvre)
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Joint-learning with additional cartography

How can we use collaborative, open source cartography to help us ? 
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Joint-learning with additional cartography

Optical and OSM data fusion using 
residual correction

Fusenet architecture applied to optical and 
OSM

Fusenet : Hazirbas et al., ““FuseNet: 
Incorporating Depth into Semantic 
Segmentation via Fusion-Based CNN 
Architecture”, ACCV 2016
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Joint-learning results
RGB Ground truthOSM

SegNet (RGB) FuseNet (OSM + RGB)
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Joint-learning with additional cartography

Classification results

Evolution during training

→ Converges faster and yields in better-defined structures

Joint Learning from Earth Observation and OpenStreetMap Data to Get Faster Better 
Semantic Maps, N. Audebert, B. Le Saux, S. Lefèvre, CVPR/Earth Vision'2017
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Multi-temporal activity analysis

(with Rodrigo Daudt, Alexandre Boulch and Yann Gousseau)
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Multi-temporal activity analysis

How to extend semantic analysis to multitemporal data ?

→ detect changes ;

→ monitor activity in high-revisit rate acquisitions ;

→  focus on specific changes (urban, agriculture, vehicles, industrial activity...)

Rio (Brazil) - Original Copernicus Sentinel Data 2018 available from the European Space Agency (https://sentinel.esa.int).
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Multi-temporal activity analysis

 
 
 
 
 
 
 
 
 

Semantic Change Detection:

 Fully convolutional networks for change detection
 Joint multi-task learning of land cover and change maps
 Creation of the first large scale dataset for semantic change detection:

HRSCD – High Resolution Semantic Change Detection Dataset
https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset

Multi-Task Learning for High Resolution Semantic Change Detection, 
R. Caye Daudt, B. Le Saux, A. Boulch, Y. Gousseau, CVIU 2019
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Multi-temporal activity analysis

 
 
 
 
  End-to-end, fully convolutional networks 

for change detection
  Prediction of land covers and change 

maps

 Dense prediction of urban evolution in 
open data
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Multi-temporal activity analysis

… but reference data might be 
unreliable !

➔ Weak-learning

 Iterative training with data 
cleansing
 Process predictions with 
Guided Anisotropic Diffusion 
to fit the images
 

Guided Anisotropic Diffusion and Iterative Learning for Supervised Change Detection, 
R. Caye Daudt, B. Le Saux, A. Boulch, Y. Gousseau, CVPR/EarthVision 2019
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Multi-temporal activity analysis

 
 
 

 
  (Cautious) iterative model training / reference cleansing method
  Prediction of “true change” maps

 Better trained networks, reducing the effect of approximate labels
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Hyperspectral data classification

(with Nicolas Audebert and Sébastien Lefèvre)
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Hyperspectral data classification

How to extend semantic analysis to hyperspectral data ?

→ RGB to 100+ bands, image to data cube ;

→ finer spectral description, out-of-visible ;

→ lower resolution but finer class discrimination (materials, stressed or healthy 
vegetation...)

Houston (Texas, USA) – IEEE GRSS IADF TC’s Data Fusion Contest 2018
(http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/).
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Hyperspectral data classification

Several conv. net architectures adapted to HSI classification :
 Spectrum-based (1D), spatial-spectral
 3D-convolution CNNs
➢Open-source toolbox DeepHyperX: https://github.com/nshaud/DeepHyperX

Several architectures adapted to change detection :

 Patch-based or dense

 Concatenated input or siamese encoders

 Siamese diff U-net to focus the decoder on changes

Several architectures adapted to change detection :

 Patch-based or dense

 Concatenated input or siamese encoders

 Siamese diff U-net to focus the decoder on changes

Audebert et al.. Deep learning for Hyperspectral classification: A comparative review, GRSM’19
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Hyperspectral data classification

Composite SVM CNN 1D CNN 3D  Ground-Truth

Pavia Univ. dataset :
 1D conv. nets slighly better than standard SVM
 3D conv. nets offer better spatial regularization 

(retrieve local 3D spatial-spectral patterns)

Deep Learning Classification of Hyperspectral Data: A Comparative Review, N. 
Audebert, B. Le Saux, S. Lefèvre, GRSM 2019
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ICI une grosse image à demi labelisée en depth 
estimation, standard-view, pour changer de chapitre

RGB to depth NYUv2 datasetl
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.htm
l
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Distance Transform Regression 
for  Semantic Segmentation

(with Nicolas Audebert, Alexandre Boulch and Sébastien Lefèvre)
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Distance Transform Regression for Semantic Segmentation

Play with losses to change the objective :
 Classification borders are often imprecise, even in ground-truth !
 Add more information to drive the optimization, e.g. distance to the boundary

Several architectures adapted to change detection :

 Patch-based or dense

 Concatenated input or siamese encoders

 Siamese diff U-net to focus the decoder on changes

Several architectures adapted to change detection :

 Patch-based or dense

 Concatenated input or siamese encoders

 Siamese diff U-net to focus the decoder on changes



57

Distance Transform Regression for Semantic Segmentation

Multi-task learning :
 L1-Regression on the truncated distance maps, and
 Cross-entropy classification on the class label masks.

→ Regularization of the classification

Several architectures adapted to change detection :

 Patch-based or dense

 Concatenated input or siamese encoders

 Siamese diff U-net to focus the decoder on changes

Several architectures adapted to change detection :

 Patch-based or dense

 Concatenated input or siamese encoders

 Siamese diff U-net to focus the decoder on changes
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Distance Transform Regression for Semantic Segmentation

→ Improves consistency / smoothness for sidewalks, trees, poles and trafic signs

Several architectures adapted to change detection :

 Patch-based or dense

 Concatenated input or siamese encoders

 Siamese diff U-net to focus the decoder on changes

Several architectures adapted to change detection :

 Patch-based or dense

 Concatenated input or siamese encoders

 Siamese diff U-net to focus the decoder on changes

CamVid RGB PSPnet (classif) PSPnet (classif+DTR) GT

Distance transform regression for spatially-aware deep semantic segmentation, N. 
Audebert, A. Boulch, B. Le Saux, S. Lefèvre, CVIU 2019
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Regression Losses 
for Single-Image Depth Estimation

(with Marcela Carvalho, Pauline Trouvé-Peloux, 
Frédéric Champagnat and Andrès Almansa)

https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset
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Regression for Depth Estimation

→ Objective : regression on a depth map

D3Net :

Encoder-decoder network with :
 Dense blocks in the encoder,
 Skipping connections between encoder and decoder for context-awareness...
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Regression for Depth Estimation

→ Objective : regression on a depth map

D3Net :

Regression loss with :
  L1 for global estimation, and
 Adversarial loss (LS-GAN) for details (if enough samples!).
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Regression for Depth Estimation [ D3Net.mp4 ]

Results : [video] 
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Regression for Depth Estimation

Results :

On regression functions for depth estimation, Marcela Carvalho, Bertrand Le Saux, 
Pauline Trouvé, Andrés Almansa, Fréderic Champagnat, ICIP’18
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Regression for Depth Estimation

Deep from Defocus “in the wild” : 

→ using lens with small depth of field
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Regression for Depth Estimation

Measuring epistemic uncertainty of the network
● Bayesian net
● Monte-Carlo dropout

 Uncertainty with and without depth-from-defocus :
● Uncertainty on low-textured areas
● Defocus reduces errors and increases confidence

On regression functions for depth estimation, M. Carvalho, B. Le Saux, 
P. Trouvé-Peloux, A. Almansa, F. Champagnat, ECCV/3DRiW’18
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3D Robotic Exploration

(with Joris Guerry, Alexandre Boulch and David Filliat)

http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/
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3D robotic exploration

Point-cloud from a single-view: RGB-D data

http://rgbd.cs.princeton.edu/

 Even with a single low-resolution, cheap 
RGB-D acquisition → rich 3D information

 But scene understanding depends on the 
point of view !

https://github.com/nshaud/DeepHyperX
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3D robotic exploration

Point-cloud from a single-view: RGB-D data

 Sampling strategy : around the original point of view
  Then quite standard SnapNet pipeline

 Works as 3D-consistent data augmentation

SnapNet-R: Consistent 3D Multi-View Semantic Labeling 
for Robotics, Guerry et al., ICCV/3DRMS'2017
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3D robotics

Point-cloud from a 

single-view: RGB-D data

SunRGBD

 

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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3D robot exploration

Point-cloud from a 

single-view: RGB-D data

SunRGBD

 

SnapNet-R: Consistent 3D Multi-View Semantic Labeling 
for Robotics, Guerry et al., ICCV/3DRMS'2017
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3D robot exploration

Point-cloud from a 

single-view: RGB-D data

NYUv2

 

SnapNet-R: Consistent 3D Multi-View Semantic 
Labeling for Robotics, Guerry et al., ICCV/3DRMS'2017
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Point-cloud semantic labeling

Multisource info (image/DSM) is used in the best approaches 

Large-Scale Point-Cloud Classif Benchmark / ETHZ
 http://semantic3d.net
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3D Point-Cloud Semantic Labeling with SnapNet

(with Alexandre Boulch, Joris Guerry and Nicolas Audebert)



3D semantic labeling

How to understand and classify an environment captured in 3D?
(by LiDAR or photogrammetry)
 
 



SnapNet for 3D semantic labeling

 
Objective :  Label each 3D point with class 
label
 
Key-idea : Take snapshots all-over the point 
cloud, and classify them !
 



SnapNet : urban classification

 
 

Large-Scale Point-Cloud Classif Benchmark / ETHZ
 http://semantic3d.net

 
3D urban mapping from LiDAR
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SnapNet : urban classification

Point-cloud semantic labeling using deep segmentation networks, Alexandre 
Boulch, Bertrand Le Saux, Nicolas Audebert, Eurographics/3DOR'2017

1: man-made terrain; 2: natural terrain; 3: high vegetation; 4 low-vegetation; 5: buildings; 6: hardscape; 
7: scanning artefacts; 8: cars
IoU: Intersection over Union; A_IoU: Average IoU; OA: Overall per-pixel Accuracy

Large-Scale Point-Cloud Classif Benchmark / ETHZ
 http://semantic3d.net

D3Net.mp4
D3Net.mp4
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SnapNet : Search-and-rescue classification

Lyon (Fr.) : FP7 Inachus Pilot Test #2 in May 2017
 Point-clouds from micro-UAVs and photogrammetry
 Urban semantizer → buildings, terrain, vegetation…
 Rubble predictor

 Building + rubble 3D map

with demolition estimate
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SnapNet : Search-and-rescue classification

Lyon (Fr., Inachus Pilot Test #2 in May 2017) :

Building + rubble 3D map with demolition estimate
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SnapNet : Search-and-rescue classification

Lyon (Fr., Inachus Pilot Test #2 in May 2017) :

Building + rubble 3D map with demolition estimate
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Concluding remarks
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Concluding remarks

Overall objective : Understanding the environment.

A few common threads :

 Mostly discriminative models, chosen for efficiency, using strong a priori 
information to cope with the scarcity of data

 Use of multiple viewpoints on the scene (more and more, randomized) to 
recover 3D structure

 Leveraging multimodal information and data to get better analysis, and in 
particular combining appearance and 3D information
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Challenge #2 : large scale scene understanding 

Short-term: Building better models

 Multi-task learning for self supervision1

 Weak-learning from imprecise or wrong reference (not human-generated)
 Interactive and active learning2 for making more robust models and 

predictions
 Multi-temporal analysis to monitor Earth activity

➢Mapping + DSM generation: https://github.com/marcelampc/aerial_mtl/

1 with  M. Carvalho et al., J. Castillo-Navarro et al.
2 with G. Lenczner et al.

Multitask Learning of Height and Semantics from Aerial Images,
M. Carvalho, B. Le Saux, P. Trouvé, A. Almansa, F. Champagnat, GRSL’19
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Challenge #2 : large scale scene understanding 

Middle-term: 
Improving the generalization of Earth observation models

 Semi-supervised and self-supervised learning to 
leverage unlabeled data1

 Learning from synthetic data / synthesize data for 
training

1 with J. Castillo-Navarro, A. Boulch & S. Lefèvre

Long term: large scale highly-multimodal and 3D Earth 
observation → Digital Twin Earth

 Geo-spatial analysis, by leveraging geo-referenced multi-
source data

 Large-scale 3D from space, including multi-temporal 3D 
analysis

(c
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Questions ?

Mail: bertrand.le.saux@esa.int

Web: http://blesaux.github.io
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http://rgbd.cs.princeton.edu/

	Slide 3
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 14
	Slide 15
	Slide 16
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 88
	Slide 91
	Slide 92
	Slide 96

