

Machine Learning Models for Scene Understanding

EOP-Ф 31/03/2020

Bertrand Le Saux

bertrand.le.saux@esa.int

Scene understanding?

Machine Learning Models for Scene Understanding [T2]

Scene understanding?

General scene understanding:

object detection, semantic labeling, 3D structure, denoising, motion and action recognition, captioning, etc.

Varcity project, ETHZ http://www.varcity.eu/

→ Build functions able to estimate semantics and geometry of a scene

Scene understanding?

Labeling pixels

→ Build functions able to estimate semantics and geometry of a scene

Outline

In this talk:

- Why using conv. nets for semantic mapping?
- Dense conv. nets for semantic segmentation
- Fusion of heterogeneous data
- Joint learning with open-source cartography
 Multi-temporal analysis
 Hyperspectral data classification

- Distance-transform regression for semantic labeling
- Losses for single-image depth prediction
 Robotic exploration
- 3D point-cloud semantic mapping with SnapNet
- Urban mapping

Benchmarking classification

(or : why using conv. nets for semantic mapping ?)

(with Adrien Lagrange, Anne Beaupère, Alexandre Boulch, Adrien Chan-Hon-Tong, Stéphane Herbin, Hicham Randrianarivo, Marin Ferecatu)

Classification algorithms in competition

Data Fusion Contest 2015: VHR images, DSM, 8-class semantic reference

Nets

Results: classification measures

					./ (2 4					
3D	Algorithm	Imp.	Build.	Low	Tree	Car	Clutter	Boat	Water	Overall	Cohen
		surf.		veg.						acc. %	κ
*	Expert	58.97	63.87	74.55					92.39	Ø	Ø
	RGB/SVM	53.89	53.53	50.32	32.97	24.02	13.75	12.12	98.52	60.77	0.52
*	RGBd/SVM	14.51	67.79	38.03	27.43	7.15	1.12	14.58	98.45	50.76	0.41
*	RGB dI/SVM	60.86	69.01	57.12	38.12	11.59	20.49	15.04	94.42	63.83	0.56
	HOG32/SVM	28.94	43.17	48.77	27.32	30.24	17.39	12.61	88.02	52.45	0.41
	HOG16/SVM	39.52	38.45	35.65	29.99	21.93	16.13	13.52	80.02	49.4	0.36
	HSV/SVM	71.60	46.97	68.38	0.12	0.00	13.71	0.00	92.14	70.16	0.60
*	HSVDGr/SVM	73.30	70.85	68.75	0.17	0.00	17.11	0.00	92.37	73.60	0.65
	SOM							51.45		Ø	Ø
	DtMM					48.46				Ø	Ø
	RGB OverFeat/SVM	55.86	63.34	59.48	64.44	36.03	28.31	41.51	92.07	67.97	0.59
	RGB Caffe/SVM	62.32	62.66	63.23	60.84	31.34	32.49	46.57	95.61	71.06	0.63
	RGB VGG/SVM	63.18	64.66	63.60	66.98	31.46	43.68	51.92	95.93	72.36	0.64
*	$RGBd\ VGG/SVM$	66.02	74.26	65.04	66.94	32.04	44.96	50.61	96.31	74.77	0.67
*	$RGBd^+$ VGG/SVM	67.66	72.70	68.38	78.77	33.92	45.6	56.10	96.50	76.56	0.70
*	$RGBd^+$ trained AlexNet	79.10	75.60	78.00	79.50	50.80	63.40	44.80	98.20	83.32	0.78

Processing of Extremely High-Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest–Part A: 2-D Contest, Campos-Taberner et al., **JSTARS'2016**

Results: classification map #6

Dense conv. nets for semantic segmentation

(with Nicolas Audebert and Sébastien Lefèvre)

Semantic Segmentation

Classification

horse: 0.98 person: 0.01

car: 0.005 dog: 0.003 cat: 0.001 apple: 0.0

Segmentation

Classification: 1 image → 1 label

Segmentation: 1 pixel → 1 label

Image = structured pixel ensemble

Network architecture:

Fully Convolutional Network [Long et al. 2015]

Fully convolutional networks

Standard AlexNet

Fully-convolutional AlexNet

Semantic Segmentation

SegNet: A deep convolutional **Encoder-Decoder** architecture for Image Segmentation. Badrinarayanan, V., Kendall, A., Cipolla, R., *TPAMI 2016*

And today: U-net [Ronneberger et al., 2015], Hourglass [Newell et al., 2016]...

SegNet for semantic segmentation of EO data

SegNet compared

Summary:

- Encoder-decoder frameworks result in precise maps
- Very good overall accuracy
- Precise segmentation of small objects (vehicles...)
- Pre-trained models available in the Caffe Model Zoo / in pytorch
- Check out: https://github.com/nshaud/DeepNetsForEO

Segment-before-detect

- Segmentation is precise enough to detect vehicles by simple connected component extraction
- Allows study of vehicle repartition and density in cities

Fusion of heterogeneous data: residual correction

(with Nicolas Audebert and Sébastien Lefèvre)

How can we use complementary data such as optical IR/R/G and LiDAR (DSM / nDSM) together?

Dual stream with naive fusion (averaging the 2 predictions)

vs. Learning-based fusion

- Dual-stream: RGB and Composite (DSM, NDSM, NDVI)
- Learning-based fusion based on residual correction

- Inspired by residual learning [He et al., 2015]
- Learn to correct 2nd-order prediction error

Residual correction results

Method	imp surf	building	low veg	tree	car	Accuracy	
RF + CRF ("HUST") CNN ensemble ("ONE_5")	86.9% 87.8%	92.0% 92.0%	78.3% 77.8%	86.9% 86.2%	29.0% 50.7%	85.9% 85.9%	
FCN ("DLR_2") FCN + RF + CRF ("DST_2")	90.3% 90.5%	92.3% 93.7%	82.5% 83.4%	89.5% 89.2%	76.3% 72.6%	88.5% 89.1%	
SegNet++ SegNet++ + fusion	91.5 % 91.0%	94.3% 94.5 %	82.7% 84.4 %	89.3% 89.9 %	85.7 % 77.8%	89.4% 89.8 %	

Joint learning with additional cartography

(with Nicolas Audebert and Sébastien Lefèvre)

Joint-learning with additional cartography

How can we use collaborative, open source cartography to help us?

Joint-learning with additional cartography

Optical and OSM data fusion using residual correction

Fusenet architecture applied to optical and OSM

Fusenet: Hazirbas et al., "FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture", ACCV 2016

39

Joint-learning results

Joint-learning with additional cartography

Classification results

OSM	Method	imp. surfaces	buildings	low veg.	trees	cars	Overall
Binary	OSMNet	54.8	90.0	51.5	0.0	0.0	60.3
Ø	SegNet RGB	93.0	92.9	85.0	85.1	95.1	89.7
D'	Residual Correction RGB+OSM	93.9	92.8	85.1	85.2	95.8	90.6
Binary	FuseNet RGB+OSM	95.3	95.9	86.3	85.1	96.8	92.3

Evolution during training

→ Converges faster and yields in better-defined structures

(with Rodrigo Daudt, Alexandre Boulch and Yann Gousseau)

Rio (Brazil) - Original Copernicus Sentinel Data 2018 available from the European Space Agency (https://sentinel.esa.int).

How to extend semantic analysis to multitemporal data?

- \rightarrow detect changes;
- → monitor activity in high-revisit rate acquisitions;
- → focus on specific changes (urban, agriculture, vehicles, industrial activity...)

Semantic Change Detection:

- Fully convolutional networks for change detection
- Joint multi-task learning of land cover and change maps
- Creation of the first large scale dataset for semantic change detection:
 HRSCD High Resolution Semantic Change Detection Dataset

https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset

- End-to-end, fully convolutional networks for change detection
- Prediction of land covers and change maps
- → Dense prediction of urban evolution in open data

... but reference data might be unreliable!

- → Weak-learning
- Iterative training with data cleansing
- Process predictions with
 Guided Anisotropic Diffusion
 to fit the images

- (Cautious) iterative model training / reference cleansing method
- Prediction of "true change" maps
- → Better trained networks, reducing the effect of approximate labels

Hyperspectral data classification

(with Nicolas Audebert and Sébastien Lefèvre)

Hyperspectral data classification

Houston (Texas, USA) – IEEE GRSS IADF TC's Data Fusion Contest 2018

(http://www.grss.jeee.org/community/technical-committees/data-fusion-contest/)

How to extend semantic analysis to hyperspectral data?

- → RGB to 100+ bands, image to data cube ;
- → finer spectral description, out-of-visible;
- → lower resolution but finer class discrimination (materials, stressed or healthy vegetation...)

Hyperspectral data classification

Several conv. net architectures adapted to HSI classification:

- Spectrum-based (1D), spatial-spectral
- 3D-convolution CNNs
- ➤ Open-source toolbox DeepHyperX: https://github.com/nshaud/DeepHyperX

Hyperspectral data classification

Pavia Univ. dataset:

- 1D conv. nets slighly better than standard SVM
- 3D conv. nets offer better spatial regularization (retrieve local 3D spatial-spectral patterns)

(with Nicolas Audebert, Alexandre Boulch and Sébastien Lefèvre)

Play with losses to change the objective :

- Classification borders are often imprecise, even in ground-truth!
- Add more information to drive the optimization, e.g. distance to the boundary

Multi-task learning:

- L1-Regression on the truncated distance maps, and
- Cross-entropy classification on the class label masks.

→ Regularization of the classification

→ Improves consistency / smoothness for sidewalks, trees, poles and trafic signs

10

Regression Losses for Single-Image Depth Estimation

(with Marcela Carvalho, Pauline Trouvé-Peloux, Frédéric Champagnat and Andrès Almansa)

→ Objective : regression on a depth map

D3Net:

Encoder-decoder network with:

- Dense blocks in the encoder,
- Skipping connections between encoder and decoder for context-awareness...

→ Objective : regression on a depth map

Regression loss with:

- L1 for global estimation, and
- Adversarial loss (LS-GAN) for details (if enough samples!).

Regression for Depth Estimation [D3Net.mp4]

Results:

Methods		Er	ror↓		Accuracy [↑]
	rel	log10	rms	rmslog	$\delta < 1.25 \ \delta < 1.25^2 \ \delta < 1.25^3$
Eigen & Fergus 2015	0.158	-	0.641	0.214	76.9% 95.0% 98.8%
Laina et al. 2016	0.127	0.055	0.573	0.195	81.1% 95.3% 98.8%
D. Xu et al. 2017	0.121	0.052	0.586	-	81.1% 95.4% 98.7%
Cao et al. 2017	0.141	0.060	0.540	-	81.9% 96.5% 99.2%
Jung et al. 2017	0.134	-	0.527	-	82.2% 97.1% 99.3%
Kendall & Gal 2017	0.110	0.045	0.506	-	81.7% 95.9% 98.9%
D3-Net	0.136	-	0.504	0.199	<i>82.1</i> % 95.5% 98.7%

RVB Vérité terrain LScGAN+L1 L1 BerHu [16] L2 Eigen[4]

Deep from Defocus "in the wild":

→ using lens with small depth of field

Measuring epistemic uncertainty of the network

- Bayesian net
- Monte-Carlo dropout

Uncertainty with and without depth-from-defocus:

- Uncertainty on low-textured areas
- Defocus reduces errors and increases confidence

3D Robotic Exploration

(with Joris Guerry, Alexandre Boulch and David Filliat)

3D robotic exploration

Point-cloud from a single-view: RGB-D data

http://rgbd.cs.princeton.edu/

- Even with a single low-resolution, cheap RGB-D acquisition → rich 3D information
- But scene understanding depends on the point of view!

3D robotic exploration

Point-cloud from a single-view: RGB-D data

- Sampling strategy: around the original point of view
- Then quite standard SnapNet pipeline

→ Works as 3D-consistent data augmentation

71

Point-cloud from a single-view: RGB-D data

SunRGBD

3D robot exploration

Point-cloud from a single-view: RGB-D data

SunRGBD

	Train	ning	Test	ting	(S)		
experiment	preproc.	augm.	preproc.	augm.	OA	MA	IoU
LSTM-CF 30 (RGB)	X	X	X	X	-	48.1	-
FCN 8s 32 (RGB)	X	X	X	X	68.2	38.4	27.4
Bayesian SegNet [27] (RGB)	X	X	X	X	71.2	45.9	30.7
Context-CRF 31 (RGBD)	×	X	X	X	78.4	53.4	42.3
*FuseNet SF5 23 (RGBD)	X	X	X	X	76.3	48.3	37.3
DFCN-DCRF [26] (RGBD)	X	X	X	X	76.6	50.6	39.3
*1 FuseNet SF5	X	X	X	X	76.88	52.61	39.17
1 FuseNet SF5	X	X	X	X	77.21	54.81	39.11
2	X	X	~	X	74.87	52.47	36.68
3	X	X	~	~	72.52	53.27	33.89
4	/	X	X	X	72.81	52.02	34.32
5	~	X	~	X	77.20	55.03	39.33
6	1	X	~	~	70.25	56.87	30.32
7	~	~	X	X	75.51	53.71	36.65
8	~	~	~	X	77.57	56.70	38.83
9 SnapNet-R	~	~	~	~	78.04	58.13	39.61
10** FusetNet SF5 (HD)	X	X	X	X	71.44	45.97	29.74
11** SnapNet-R(HD)	V	~	~	~	73.55	50.07	33.46

3D robot exploration

Point-cloud from a single-view: RGB-D data

NYUv2

experiment	OA	MA	IoU
40 class	es		
RCNN 17 (RGB-HHA)	60.3	35.1	28.6
FCN 16s [32] (RGB-HHA)	65.4	46.1	34.0
Eigen et al. 12 (RGB-D-N)	65.6	45.1	34.1
Context-CRF [31] (RGB-D)	67.6	49.6	37.1
*FuseNet SF3[33] (RGB-D)	66.4	44.2	34.0
*MVCNet-MP 33 (RGB-D)	70.66	51.78	40.07
FuseNet SF5 (RGB-D)	62.19	48.28	31.01
SnapNet-R (RGB-D)	69.20	60.55	38.33

13 classe	es		
Couprie et al. 10 (RGB-D)	52.4	36.2	-
Hermans et al. 24 (RGB-D)	54.2	48.0	-
SceneNet (DHA)[21] (DHA)	67.2	52.5	_
Eigen et al. [12] (RGB-D-N)	75.4	66.9	52.6
*FuseNet SF3 33 (RGB-D)	75.8	66.2	54.2
*MVCNet-MP 33 (RGB-D)	79.13	70.59	59.07
Eigen-SF-CRF [35] (RGB-D)	63.6	66.9	-
FuseNet SF5 (RGB-D)	78.41	72.07	56.33
SnapNet-R (RGB-D)	81.95	77.51	61.78

Large-Scale Point-Cloud Classif Benchmark / ETHZ http://semantic3d.net

3D Point-Cloud Semantic Labeling with SnapNet

(with Alexandre Boulch, Joris Guerry and Nicolas Audebert)

3D semantic labeling

How to understand and classify an environment captured in 3D? (by LiDAR or photogrammetry)

SnapNet for 3D semantic labeling

Objective: Label each 3D point with class label

Key-idea: Take snapshots all-over the point cloud, and classify them!

SnapNet: urban classification

3D urban mapping from LiDAR

SnapNet: urban classification

	-Scale Point-Cl /sema_itic3d.net		nchmark	/ETHZ			-			27000		
	Name	↑A_loU	OA	[s]	loU 1	loU 2	loU 3	loU 4	IoU 5	loU 6	loU 7	loU 8
1	SEGCloud	0.613	0.881	1881.00	0.839	0.660	0.860	0.405	0.911	0.309	0.275	0.643
			L. P. Tchapr	mi, C. B.Choy, I. Armeni,	J. Gwak, S. Sav	varese, SEGCloud	l: Semantic Segn	nentation of 3D P	oint Clouds, Inter	national Confere	nce on 3D Vision	(3DV), 2017
2	SnapNet_	0.591	0.886	3600.00	0.820	0.773	0.797	0.229	0.911	0.184	0.373	0.644
				Unstructured p	oint cloud sema	ntic labeling using	deep segmentat	ion networks. A.	Boulch, B. Le Sa	ux and N. Audeb	ert, Eurographics	3DOR 2017
3	DeePr3SS	0.585	0.889	0.00	0.856	0.832	0.742	0.324	0.897	0.185	0.251	0.592
					F. Lawin	, M. Danelljan, P.	Tosteberg, G. Bh	at, F. Khan, M. F	elsberg. Deep Pr	ojective 3D Sema	ntic Segmentatio	on. In , 2017.
4	3D-FCNN-TI	0.582	0.875	774.00	0.840	0.711	0.770	0.318	0.899	0.277	0.252	0.590
			L. P. Tchapr	ni, C. B.Choy, I. Armeni,	J. Gwak, S. Sav	varese, SEGCloud	: Semantic Segn	nentation of 3D P	oint Clouds, Inter	national Confere	nce on 3D Vision	(3DV), 2017
5	DLUT_SR	0.563	0.860	1.00	0.953	0.849	0.548	0.296	0.832	0.192	0.320	0.518
											Anonymou	s submission
6	TMLC-MSR	0.542	0.862	1800.00	0.898	0.745	0.537	0.268	0.888	0.189	0.364	0.447
	Timo Hackel, Jan D. Wegner, Konrad Schindler: Fast semantic segmentation of 3d point clouds with strongly varying density. ISPRS Annals - ISPRS Congress, Prague, 2016											
7	DeepNet	0.437	0.772	64800.00	0.838	0.385	0.548	0.085	0.841	0.151	0.223	0.423
											Anonymou	s submission
8	TML-PCR	0.384	0.740	0.00	0.726	0.730	0.485	0.224	0.707	0.050	0.000	0.150

Mind the gap: modeling local and global context in (road) networks: Javier Montoya, Jan D. Wegner, Lubor Ladicky, Konrad Schindler. In: German Conference on Pattern Recognition (GCPR), Münster, Germany, 2014

1: man-made terrain; 2: natural terrain; 3: high vegetation; 4 low-vegetation; 5: buildings; 6: hardscape;

7: scanning artefacts; 8: cars

IoU: Intersection over Union; A_IoU: Average IoU; OA: Overall per-pixel Accuracy

80

Point-cloud semantic labeling using deep segmentation networks, *Alexandre Boulch, Bertrand Le Saux, Nicolas Audebert*, **Eurographics/3DOR'2017**

SnapNet: Search-and-rescue classification

Lyon (Fr.): FP7 Inachus Pilot Test #2 in May 2017

- Point-clouds from micro-UAVs and photogrammetry
- Urban semantizer → buildings, terrain, vegetation...
- Rubble predictor

SnapNet: Search-and-rescue classification

Lyon (Fr., Inachus Pilot Test #2 in May 2017):

Building + rubble 3D map with demolition estimate

SnapNet: Search-and-rescue classification

Concluding remarks

Concluding remarks

Overall objective: Understanding the environment.

A few common threads:

- Mostly discriminative models, chosen for efficiency, using strong a priori information to cope with the scarcity of data
- Use of multiple viewpoints on the scene (more and more, randomized) to recover 3D structure
- Leveraging multimodal information and data to get better analysis, and in particular combining appearance and 3D information

Challenge #2 : large scale scene understanding

Short-term: Building better models

- Multi-task learning for self supervision¹
- Weak-learning from imprecise or wrong reference (not human-generated)
- Interactive and active learning² for making more robust models and predictions
- Multi-temporal analysis to monitor Earth activity
- ► Mapping + DSM generation: https://github.com/marcelampc/aerial_mtl/

Challenge #2: large scale scene understanding

Middle-term:

Improving the generalization of Earth observation models

- Semi-supervised and self-supervised learning to leverage unlabeled data¹
- Learning from synthetic data / synthesize data for training

Long term: large scale highly-multimodal and 3D Earth observation → **Digital Twin Earth**

- Geo-spatial analysis, by leveraging geo-referenced multisource data
- Large-scale 3D from space, including multi-temporal 3D analysis

Questions?

Mail: bertrand.le.saux@esa.int

Web: http://blesaux.github.io